
Portus: Efficient DNN Checkpointing to Persistent
Memory with Zero-Copy

Yuanhao Li†∗, Tianyuan Wu†∗, Guancheng Li†, Yanjie Song†, and Shu Yin†‡§
{liyh12022, wuty, ligch2022, songyj, yinshu}@shanghaitech.edu.cn

†Shanghaitech University, China
‡ Shanghai Engineering Research Center of Intelligent Vision and Imaging, China

Abstract—We introduce Portus, an efficient checkpointing
system for DNN models. The core of Portus is a three-level index
structure and a direct RDMA datapath that enables fast check-
points between GPUs and persistent memory in a serialization-
free way. Portus offers a zero-copy approach between GPU
and persistent memory without involving main memory and
kernel crossings to underlying file systems. Portus also applies an
asynchronous mechanism to hide the checkpointing overhead in
the model training procedures. We integrated a Portus prototype
into a high-performance AI cluster with NVIDIA®V100 and A40
GPUs and Intel®Optane™persistent memory, then evaluated its
performance in both single-GPU and multi-GPU large model
training scenarios. Experiment results show that compared to
a state-of-the-art checkpointing system, Portus achieves up to
9.23× and 7.0× speedup in checkpointing and restoring, respec-
tively. Portus achieves up to 2.6× higher throughput and 8×
faster checkpointing operation on a large language model, GPT-
22B.

Index Terms—Checkpointing, Persistence Memory, RDMA,
Systems for AI

I. INTRODUCTION

Deep Neural Networks (DNNs) gained popularity in various

machine learning domains, including translation [1], image

recognition (e.g., ResNet [2], vision transformers [3], and

VGG [4]), speech recognition [5], [6], and data mining [7].

To achieve better performance on these tasks, there has been

an explosive growth in the number of model parameters and

the scale of training datasets [8]. This trend has become

particularly notable in the era of large models like GPT,

which now dominate modern deep learning research. The

demands of effectively training these large models that cannot

be accommodated on a single GPU led to the widespread

adoption of model parallelism techniques, which partition and

distribute the model across multiple GPU nodes [9].

Efficiently training larger DNN models presents various

challenges for deep learning systems, particularly in fault

tolerance. Large model training often involves a large number

of GPUs, and a single GPU failure can result in a system-wide

crash, leading to a considerably higher frequency of crashes

compared to traditional DNN training [10]. As a common

approach, the checkpointing technique allows DNN models

to save parameters and optimizer states as files for restoring

∗ These authors contributed equally to this work.§ Shu Yin is the corresponding author.

after a crash. Although checkpoints prevent DNN models from

redundant re-training from the beginning, it is time-consuming

when models contain enormous parameters. In model parallel

training, checkpointing performance becomes worse. This is

because each node saves independent checkpoint files to

a shared file system for collaborations with other nodes

(as detailed in §II-A), which incurs the I/O contention and

synchronization overhead. The inefficiency of checkpointing

systems prolongs large DNN model training time because the

new training steps will not commence until all the node-wide

checkpoints are complete. The more GPU nodes involved, the

longer the training steps wait.

Researchers attempt to address the efficiency of DNN

checkpointing issues via scheduling algorithms and systemic

techniques [11]–[13]. Some studies focus on reducing check-

point file size via data compression (e.g., Deepsz [14]) or

incremental checkpoints (e.g., Check-N-Run [15]), while oth-

ers try to eliminate checkpoint stalls by overlapping I/O with

computing (e.g., CheckFreq [16]). We conducted a breakdown

analysis of the checkpointing operation of BERT models to a

storage node equipped with persistent memory (a.k.a. PMEM)

and 100Gbps InfiniBand network. The results imply that

the DNN checkpointing inefficiency comes from serialization

from GPU to main memory and redundant data copies from

main memory to file systems (detailed in §II-B).

Studies also indicate that DNN model training requires

higher checkpointing frequency to tolerate execution failures.

Eisenman et al. reported that the failure intervals of over 60%
of failed DNN training jobs on Facebook’s cluster are less

than one hour [15]. Evaluation analysis from Oobleck [17]

and Bamboo [18] implied that a failure usually occurs every

10 minutes. To address this issue, researchers suggested the

need for finer-grained checkpoint mechanisms [16] with math-

ematical analyses [19].

This dilemma leaves developers questioning whether to

apply frequent checkpoints. Decreasing the checkpointing fre-

quency can eliminate the overhead of data persistence but leads

to longer total training time because the models have to restore

more iterations after a failure. Increasing the checkpointing

frequency can reduce the restore overhead but it still leads to

longer training time because more checkpoint writes block the

training for the next step.

We propose Portus to address the inefficiency of DNN

59

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDCS60910.2024.00015

20
24

 IE
EE

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

86
05

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DC
S6

09
10

.2
02

4.
00

01
5

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

checkpointing and support finer-grained checkpoints for DNN

model training. The core of Portus is a three-level index

structure and a direct datapath between GPU and PMEM

that eliminates serialization to main memory and redundant

kernel crossings to file systems. Portus also decouples the

checkpointing and computing with an asynchronous mecha-

nism that ensures multiple concurrent checkpointing tasks of

multi-tenant or distributed large models training.

The main contributions in this paper include:

• We propose Portus, an efficient DNN checkpointing sys-
tem with minimal overhead. With a three-level index

structure and a peer-to-peer datapath, Portus achieves

zero-copy between GPUs and PMEM.

• We implement a prototype of Portus and integrate it
into an AI cluster that equips Intel®Optane™persistent

memories, NVIDIA®V100 and A40 GPUs, and Mel-

lanox®100Gbps InfiniBand network.

• We conduct comprehensive experiments to evaluate the
efficacy of Portus on conventional DNN models trained

on a single GPU and an LLM model on multiple nodes.

The results demonstrate a significant reduction in check-

pointing and total training time.

• Portus can be seamlessly integrated into common Deep
Learning frameworks (e.g., PyTorch) and provides an ef-

ficient and user-friendly solution for DNN checkpointing

and restoring.

The rest of the paper is organized as follows. Section II

provides the background and motivation of this research.

Design and implementation details of Portus are proposed in

Section III and Section IV, which is followed by an evaluation

shown in Section V. While Section VI discusses some lessons

learned from this research, and Section VII summarizes the

related works. Finally, Section VIII concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we present a brief overview of the DNN

training process and discuss the challenges of checkpoint

structures with increasing model scales.

A. Why Checkpoint for DNN models?

As the scale of DNN models continues to increase, the

number of parameters is getting enormous. For example,

LLaMa has 65 billion parameters [20], GPT-3 features 175

billion ones [21], and PaLM pushes the number to 540

billion [22]. It makes fault tolerance challenging because days

or weeks of model training escalate the failure rate of software

and hardware. A study shows that software failures occur

every 14 to 30 hours in deep recommendation systems, which

introduce 43% slowdown to handle training restarts [19]. The

Meta AI team encountered more than 110 hardware failures

during the training of OPT-175B [23]. Hardware failure is

critical because it necessitates system-level reboots for every

malfunction incident.

Although some studies attempt to use main memory for

checkpoints [10] or exchange compute with storage [18],

storing model and optimizer states as a checkpoint file to

Fig. 1. An example of tensor parallel and pipeline parallel

disks is prevalent for fault-tolerance. Nonetheless, persistent

checkpoint files of large models are more challenging, es-

pecially when modern frameworks like Megatron [9] and

DeepSpeed [24] employ parallelism techniques to train a DNN

model across multiple GPUs.

Figure 1 demonstrates an example of training a Multi-Layer

Perceptron (MLP) model across four GPUs. The pipeline

parallelism divides the model into two layers, the first of

which computes Y = GeLU(XA) and the second processes
Z = Dropout(Y B). The tensor parallelism then partitions

them in each layer, with A into [A1, A2] and B into [B1, B2]
T .

The model is finally distributed across four GPUs. Tensor

and pipeline parallelism that partition and distribute a large

model across multiple GPUs make every processor generate

a checkpoint file of its own. The up-scaling of a model leads

to the increase of both the file size and file quantities, which

causes the explosive growth of a checkpoint volume. Besides,

all the checkpoint files must be retrieved and aggregated to

facilitate a restart from a failure, which is time-consuming for

not only I/O time but also synchronization overhead to form

a complete checkpoint instance.

Motivation1: Large DNN models introduce additional re-
quirements for checkpointing when multiple GPU nodes are

involved. Existing solutions have limits in handling concurrent

checkpoint files of a distributed DNN model that runs across

multiple GPUs. Therefore, there is a need to design a structure

to manage multiple shared checkpoint files of a DNN training

for both checkpointing and restoring.

B. Why Users Do NOT Checkpoint?

Although checkpointing is feasible for the DNN model’s

fault tolerance, users prefer retraining the model over check-

points because of the time-consuming data storage and re-

trieval.

We ran an experiment to study the performance overhead of

checkpointing under existing frameworks, leveraging cutting-

edge hardware and software. The experiment dumped DNN

checkpoints from NVIDIA V100 GPUs to a storage server

equipped with Intel®Optane™Persistent Memory, which of-

fers non-volatile byte-addressable data access with ultra-low

latency and high throughput I/O. The network connection is

with Mellanox®InfiniBand, which supports up to 100Gbps

RDMA bandwidth. We chose three popular DNN models to

60

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

generate checkpoint files with the frequency according to the

state-of-the-art CheckFreq [16] (i.e., one checkpoint every 83

iterations for VIT, one checkpoint per 100 iterations for GPT-

10B and GPT-22.4B).

Fig. 2. DNN checkpointing time costs (normalized)

We learned from the results that a checkpointing operation

weighs at least 24.9% of the total time (shown in Figure 2).

As the model goes upscaling, the checkpointing overhead

becomes more significant (up to 41%). Our further profiling

studies reveal that the kernel reason behind the inefficiency

of checkpointing is the serialization from GPU memory to

main memory and the redundant data movements from main

memory to file systems (shown in Figure 3). Figure 3 demon-

strates the DNN checkpointing datapath from GPU memory to

a PMEM-enabled BeeGFS file system in our profiling studies.

Step 1, A DNN model copies the layered parameters and

optimizers from GPUs to main memory. Step 2, the DNN

training framework (e.g., PyTorch) adds metadata headers to

the tensors in each layer, serializes them, and packs them

into a checkpoint file, then triggers syscall to write the file

to BeeGFS Client on the compute node. Step 3, BeeGFS

Client transfers the file to BeeGFS Daemon, which runs in the

main memory of a storage server via RDMA. Step 4, BeeGFS

Daemon performs direct access (DAX) write to persist the file

on the underlying file system.

Fig. 3. Traditional distributed checkpointing datapath

This results in at least three redundant data copies: one

from GPU memory to the main memory on the compute

node, one from the main memory on the compute node to

the main memory on the storage node, and one from the main

memory on the storage node to PMEM. It also causes three

crossings between user and kernel mode: one serializes data

to a checkpoint file on BeeGFS Client, the second transfers it

from BeeGFS Client to BeeGFS Daemon, and the third writes

the checkpoint to PMEM.

TABLE I
DNN CHECKPOINTING OVERHEAD

Operation Percentage (%)

GPU to Main Memory 15.5%
Serialization 41.7%

Transmission (RDMA) 30.0%
Server DAX write 12.8%

We conducted a breakdown analysis of the checkpointing

process to determine the time cost of each operation. As

depicted in Table I, copying the DNN model from GPU to the

compute node’s main memory and model serialization account

for over 57.2% of the checkpointing time. In contrast, RDMA

and DAX write operations in the storage node’s kernel con-

sume the remaining 42.8% of time. This breakdown analysis

provides insight into the inefficiency of checkpointing I/O and

suggests optimization objects by eliminating serializations and

redundant copies.

Motivation2: Existing checkpoint approaches suffer inef-
ficient datapath from serialization and redundant copies for

DNN models. There is a need to design a prompt checkpoint

datapath between GPUs and persistent storage systems to

support up-scaled DNN model complexity and prolonged

training time.

III. DESIGN

A. Design Goals

First of all, Portus should provide a fast peer-to-peer data-

path to transfer checkpoint files between GPUs and PMEMs.

Second, it should manage the checkpoint data structure to

enhance finer-grained checkpointing without serialization and

redundant data copies. Third, Portus should be efficient and

flexible for large DNN models with distributed model parallel

training.

B. Architecture Overview

Figure 4 illustrates the architecture of Portus, which consists

of a client library as an extension of distributed deep learning

frameworks (e.g., PyTorch, DeepSpeed, Megatron-LM) and a

user-space daemon to manage the metadata processing and

data transmission of checkpoints. Portus Client runs in the

main memory on a compute node, and Portus Daemon is

hosted in the main memory on the storage server.

Upon a new DNN model training job, Portus Client collects

pointers to each tensor on the pre-allocated GPU memory by

the DNN framework. Portus Client then registers the GPU

address space for each tensor as an RDMA memory region

(a.k.a. MR) using NVIDIA Peer Memory [25]. Every MR

holds a unique remote key. After the registration, Portus Client

gets remote keys for MRs and aggregates them with the

metadata of layers one-to-one correspondingly into a packet to

describe a DNN model. Every metadata consists of the layer

name, data type, and shape. Finally, Portus Client sends the

61

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Architecture Overview

packet to the Portus storage server by TCP socket via IPoIB

protocol.

With the packet, Portus Daemon on the server dispatches

it to an available worker from ThreadPool and maintains a

three-level index structure (a.k.a. ModelTable-MIndex-

TensorData). The worker inserts the DNN model name into

ModelMap for lookups and creates a set of indexes (i.e.,

MIndex) for PMEM to map to the DNN checkpoint structure

under the guidance of the received packet. The worker then

allocates PMEM regions for each DNN tensor. The Allocator

records the allocation status of each PMEM region in Al-

locTable. For single GPU models, we map each MIndex to an
individual model, and its corresponding TensorData contains

all parameters for restoration. For large models trained with
tensor and pipeline parallellism across multiple nodes and

GPUs (as illustrated in Figure 4), we map each MIndex to

a model shard on a specific GPU. The collection of all these

shards forms the whole model states, which can be loaded

together for restoration. At last, Portus is ready for peer-to-

peer RDMA DNN checkpointing between GPU memory and

PMEM. Please refer to detailed discussions in §III-D.

Upon persistent checkpoint files, Portus operates data trans-

fer opposite to the ordinary checkpointing where the DNN

model writes data to the server. Instead, Portus Daemon reads

the checkpoint file proactively from the GPU memory to

PMEM. Similarly, Portus Daemon writes a checkpoint file to

the remote GPU memory for restoration instead of letting the

DNN model read the file from the server. We first explain the

details of Portus Datapath in §III-C.

C. Portus Datapath

Portus is to maintain a simple yet efficient transmission

datapath, to reduce the number of data copies and user-kernel

context switches. We discovered that the DNN model proper-

ties (i.e., #layers, tensor shapes, data types, GPU addresses)

are pre-determined and fixed during training. The structure

of checkpoint files is also pre-determined hence can be con-

structed on the storage server before the beginning of a training

iteration. In this way, Portus can map the checkpoint structure

on the PMEM to the DNN layers on the GPU memory by

RDMA memory regions. And then, Portus performs peer-

to-peer transmission between GPU memory and PMEM in

user space via RDMA verbs and NVIDIA®PeerMem kernel

module.

Figure 5(b) demonstrates the Portus datapath in check-

pointing and restoration of a DNN model. Upon a DNN

checkpointing, Portus Client informs Portus Daemon with

the word ”DO_CHECKPOINT” via a TCP socket. The server
then performs an one-sided RDMA read operation to fetch

each tensor from the remote GPU memory to PMEM. Portus

Daemon notifies the completion of pulling to Portus Client via

the same TCP socket. Similarly, Portus writes a checkpoint file

to the remote GPU memory for restoration instead of letting

the DNN model read the file from the server.

We demonstrate the traditional datapath on the bases of

BeeGFS as a reference in Figure 5(a). Compared to the

straightforward datapath of Portus, there are at least three

kernel crossings in a traditional checkpointing– 1) Client DNN

framework writes the serialized DNN model to BeeGFS via

syscall write, 2) BeeGFS client module dispatches this write

request out of client’s kernel as RDMA writes to the storage

server, 3) the file is persistent from user space to the kernel

space on PMEM via DAX write. The restoring operates an

inverse datapath that also has three kernel crossings.

Portus has two advantages: 1. it simplifies the datapath

because pulling does not trigger kernel crossings to VFS;

and 2. it decouples checkpointing with training, thereby no

need to suspend the training process for the completion of

a checkpoint. Besides the advantages of the random access

performance of PMEM via RDMA, Portus implements an

efficient index structure to store a checkpoint file without a

dedicated serialization process.

D. Data Management on Persistent Memory

With the help of the straightforward peer-to-peer datap-

ath, Portus can support rapid checkpointing, thereby making

finer-grained multi-tenant model training foreseeable. We first

(a) Checkpointing and Restoring dat-
apath with distributed filesystems

(b) Optimized checkpointing and
Restoring datapath with Portus

Fig. 5. Checkpointing and Restoring datapath comparison between distributed
filesystems and Portus

62

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

present the three-level index structure in Portus for fast, finer-

grained, and multi-tenant checkpointing then discuss the two

common data issues, namely, crash consistency and garbage

collections.

1) Index Structure of Persistent DNN Model: We design
a three-level index structure in PMEM (i.e., ModelTable-

MIndex-TensorData) to manage multiple checkpoints that be-

long to diverse DNN models (shown in PMEM in Figure 4).

The root level ModelTable is a sorted array that stores the
mapping relationship between a DNN model name

(model_name) and the location to the second level index
MIndex (info_offset). Such the array turns into a red-
black tree structure in the main memory called ModelMap
(shown in Portus Daemon in Figure 4). ModelMap is to

quickly look up and locate the target model, each entry of

which is a pair of key-value, where the key is model_name,
and the value is info_offset. The dashed arrows between
ModelMap and ModelTable represent persistent pointers from

main memory to PMEM. Note that the Portus server manages

PMEMs in devdax mode, meaning that users can perform
direct access (i.e., DAX) to PMEM via mmap and detour

kernel file systems [26]. Portus only maintains ModelMap and

MInfo in the main memory, and keeps TensorData on PMEM

for peer-to-peer transmission without additional data copies.

The value of the second level index is a MIndex record that

contains metadata of a DNN model TensorData. A MIndex

record consists of layer quantities of a model, the name of

each layer, data type, tensor shape, size of each tensor, and

address of each tensor on PMEM (i.e., persist pointers to data

blocks). For example, MIndex for a BERT-large model is:

{ layers=397, tensor1:(name=Bert.embedding,
dtype=float32, shape=(512, 1024),
size=524288, paddr=0xffff0000),
tensor2:..., tensor3:... }.
The value of the last level index is a contiguous PMEM

region representing TensorData, which is registered as an

RDMA MR for data transmissions. Upon checkpointing, Por-

tus Daemon pulls all tensors of a DNN model via Portus

Datapath from GPU memory as a set of TensorData accord-

ingly to PMEM, which is interpreted as a checkpoint file. Note

that only ModelTable is shared while each worker thread is

independent in Portus, meaning that a worker holds its own

MIndex record and TensorData. We apply the compare&swap
intrinsic to ensure the lock-free of the whole system for high

concurrency.

2) Consistency and Space Management: The conventional
approach to handle crash consistency is to write a checkpoint

in a new file and replace the old checkpoint when the latest

one is done. But it is not efficient for Portus because each

time it needs to allocate space on PMEM and initializes a new

RDMA connection. Inspired by the copy-on-write technique,

we design a double mapping mechanism to address the crash

consistency problem in Portus (demonstrated in Figure 6).

Upon starting a new DNN training job, the Portus Daemon

creates two identical-structured checkpoints on PMEM to hold

the last two versions of the DNN model. To avoid frequent

Fig. 6. Data consistency of checkpoints

operations on PMEM and RDMA connections, Portus assigns

an active flag to the checkpoint whose data transmission
has not been completed yet. After successful transmission, it

sets the active flag to done, indicating that this checkpoint
version is ready for restoration. This technique ensures that

there is at least one valid checkpoint version present on PMEM

for recovery, thereby guaranteeing fault tolerance efficiently.
To prevent potential waste of space on PMEM due to having

two checkpoint versions, we have designed a repacking tool

to address the issue. There are two possible scenarios that

can result in invalid checkpoints: (1) when a training job

completes, only the last checkpoint version is valid, while

the other is outdated, and (2) when a training job crashes

during checkpointing, the last checkpoint version is still active,

but its data is incomplete or collapsed. To address this, the

repacking tool aggregates the valid checkpoints and frees up

more space on PMEM, as illustrated in Figure 7. This tool is

not required to be used frequently, as the capacity of PMEM is

typically in terabytes, which is sufficient to store thousands of

models’ checkpoints. Moreover, the repacking overhead can be

negligible as it is only triggered when the available space on

PMEM is low and takes only a few minutes to complete, which

can be done in the background with an overlap of training.

Fig. 7. Persistent memory repacking

E. Asynchronous Checkpointing
Figure 8 illustrates a typical DNN training iteration pro-

cedure that consists of three phases: forward pass (F), back-
propagation (B), and parameter updates (U). The parameters in
each tensor are fixed in the forward and backward propagation

and only changes in the update phase. Hence, if the checkpoint

can be persisted before the parameter updates, the training

process will no longer need to wait for I/O. Portus can

further reduce the checkpointing overhead by operating it in

an asynchronous way, meaning that Portus can decouple the

checkpointing from training iterations so that there is no need

to suspend any iteration for checkpointing.

63

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Async Server-Client Communication

Figure 9 demonstrates training timeline differences amongst

the ordinary PyTorch built-in checkpointing policy, a state-of-

the-art CheckFreq policy [16], and two Portus policies. We can

see that Portus achieves much better training efficiency due

to the eliminated serialization for snapshots and much less

persistent time costs in both synchronous and asynchronous

ways (shown in Figure 9(c) and (d)). The asynchronous

version in Figure 9(d) introduces minimal training stalls that

optimize training efficiency in the single-tenant scenario and

support higher concurrency in the multi-tenant case.

Fig. 9. Training Timeline Comparison

F. Model Recovery

Original PyTorch uses a naive recovery mechanism where

users read checkpoints from storage using torch.load()
and then restore the DNN model from this checkpoint. How-

ever, this approach is suboptimal due to redundant data copies

and high model reconstruction overhead. Although GPU Di-

rect storage enables loading checkpoints directly from storage

to GPU memory, the deserialization overhead of structured

files to DNN models still makes restoring inefficient. In

contrast, Portus provides an efficient restoration solution that

is similar to checkpointing, but the data flow for recovery is

to write a valid checkpoint file from the Portus PMEM server

directly to the GPU memory in the compute node.

First, Portus Client initializes an ”empty” model on GPU

without tensor weights transferred. Similar to checkpointing,

Portus Client then registers the GPU memory regions as

RDMA MRs and informs the server with rkeys for restoring.
Portus Client sends a restore request to Portus Daemon on

the storage server. Portus Daemon writes the requested file to

the GPU memory on the compute node via the peer-to-peer

one-sided RDMA writes and notifies Portus Client upon the
completion of data transmission.

IV. IMPLEMENTATION

a) Portable Implementation.: Portus Server is written in
3000 LOCs of C++ and built using CMake. The only depen-

dency of Portus Daemon is the RDMA-supported NIC. Our

implementation requires Infiniband, but users can use RoCE

for RDMA on existing network infrastructure. Additionally,

upon the absence of PMEM detected on the server, Portus can

use DRAM as alternatives. Portus Client is written in Python

and C++ (in additional 1,000 LOCs) as an extension of Py-

Torch. Users can download the source code and run python
setup.py install to install it. After installation, users
can use the user-friendly Python interfaces as any other Python

package. We plan to release this extension to Python package

managers like pip or Anaconda [27] for better portability.
b) Easy Sharing.: Modern AI researchers often share

DNN model epochs (or checkpoints) with other community

users after training, requiring these shared models to be stored

in general formats like pickle or HDF5. To meet this demand,

we implement a convenient command line tool Portusctl
for Portus users to manage and share DNN models on the per-

sistent memory. Users can use Portusctl view DEVICE
to view all models stored on a PMEM device. They can

select and dump desired model checkpoints out of PMEM as

general DNN checkpoint formats using Portusctl dump
CHECKPOINT FILENAME. The dumping is also efficient
because of the well-indexed data structure and high I/O

throughput of PMEM. In this way, Portus is compatible

with other existing deep learning frameworks like PyTorch,

TensorFlow, and Caffe [28].

V. EVALUATION

In this section, we first analyze the characteristics of Por-

tus Datapath between different devices (i.e., GPU memory-

PMEM, main memory-PMEM). We then evaluate the perfor-

mance and efficacy of Portus on checkpointing and restoring

with widely-used DNN models.

We seek to answer the following questions: 1) Is the brand-

new Portus Datapath effective and efficient in transmitting

data between compute and storage nodes? (§V-B); 2) How

well does Portus optimize the checkpointing and restoring

operation time? (§V-C); 3) How does Portus achieve more

efficient checkpointing? (§V-D); 4) How much does Portus

enhance the distributed large language model (LLM) training

with a model parallel on a real-world AI cluster? (§V-E).

A. Experimental Setup

We evaluated the performance of Portus using an AI cluster

as clients, and a storage node with PMEM as server.

Compute Node (denoted as Client): The cluster contains
two types of clients, namely Client-Volta and Client-Ampere.

Client-Volta equips two 64-Core AMD®EPYC™7742

@2.25GHz, 32 × 32GB DDR4-3200MHz DRAM, and four

64

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

NVIDIA®V100 GPUs and a Mellanox®ConnectX-5 100Gbps

Infiniband RNIC via PCIe4.0 interfaces.

Client-Ampere equips two 64-Core Intel®Xeon®Gold

5318Y @2.1GHz, 24 × 32GB DDR4-3200MHz DRAM,

and eight NVIDIA®A40 GPUs and a Mellanox®ConnectX-6

100Gbps Infiniband RNIC via PCIe4.0 interfaces.

We configure a BeeGFS client (ver. 7.3.2) on Clients to en-

able a remote BeeGFS file system. Each Client is with RDMA

and NVIDIA®GPU-Direct Storage enabled. Each client also

equips NVMe SSDs with an ext4 filesystem for local storage.

Storage Node (denoted as Server): The Server is an AEP
storage server, which features two 36-core Intel®Xeon®Gold

6240L @ 2.6GHz, 6 × 32GB DDR4-2933MHz DRAM,

6 × 256GB Intel®Optane™DC PMEM (1.5TB in total), a

Mellanox®ConnectX-5 100Gbps Infiniband RNIC, running

Linux 5.15.0. We configure three PMEMs to one namespace

in fsdax mode and formatted an ext4-DAX file system on

it. We stack a BeeGFS server (ver. 7.3.2) on the ext4-

DAX with RDMA and NVIDIA®GPU-Direct Storage enabled

(denote as BeeGFS-PMEM). We configure the other half of

PMEMs to devdax mode to enable Portus server to direct
access PMEM bypassing the kernel and file systems (denote

as Portus). The connection between Clients and Server is a

Mellanox®MSB7800 100Gbps switch.

TABLE II
DNN MODELS SPECIFICATIONS

Model Layers Params Size

Alexnet 16 61.1M 233MiB
ConvNeXt base 344 88.6M 338MiB
ResNet50 161 25.6M 97MiB
Swin b 329 87.8M 335MiB

VGG19 bn 70 143.7M 548MiB
VIT l 32 296 306.5M 1169MiB
BERT 396 336.2M 1282MiB

Models: We evaluate 76 DNN models that are widely

used in computer vision and natural language processing

domains, with their default batch size and other hyper-

parameters. Due to the page limits, we only present ex-

perimental results of seven representative models in the pa-

per (i.e., ResNet50 [2], Convnext base [29], Alexnet [30],

VGG19 bn [4], VIT l 32 [3], and Swin b [31] on Ima-

genet [32], and Bert-Large-Uncased [1] on CLOTH-high [33]).

Table II summarizes the model types, the number of model

layers, the number of parameters, and the total size of param-

eters.

We also evaluate a large language model, GPT, using the

Megatron model parallel framework on Client-Ampere. The
number of total parameters of GPT ranges from 1.5 billion

to 22.4 billion, which checkpoint size ranges from 6GB to

89.6GB. Evaluation results of the all the models are presented

in the Appendix.

B. Analysis of Portus Datapath

The bandwidth and latency of the Portus Datapath between

the Client-Volta and Server with different devices are presented

in Figure 10. Specifically, Figure 10(a) and (b) demonstrate the

read performance of four Portus Datapaths: the one between

the main memory on the Server (denoted as Server DRAM)
with the main memory on the Client (denoted as Client
DRAM), the one between Server DRAM with GPU memory

on the Client (denoted as Client GPU), the one between
PMEM on the Server (denoted as Server PMEM) with Client
DRAM, and between Server PMEM with Client GPU. On the

other hand, Figure 10(c) and (d) show the write performance

of the four datapaths, respectively. It is important to note

that Figure 10(b) and (d) represent the two new datapaths

for checkpointing only under the support of Portus. Before

Portus, no servers could read data from the GPU without the

intervention of DRAM for the checkpointing perspective.

We observe from the figures that DRAM or PMEM on

Server as the storage target will not affect the checkpoint

performance with Portus. It is because DRAM and PMEM are

much faster than the network connection, even with the RDMA

enabled. We want to highlight the efficacy of the Portus

Datapath between Server and Client GPU. The development

of this new datapath enables Portus to transmit checkpoint

data with minimal overhead. Note that the peak bandwidth

to access GPU memory is 5.8GB/s, which is 30% less than

DRAM. This is because all the address mappings for GPU

read are managed by a dedicated unit called base address

register (BAR), which disables prefetching for GPUs. The

intervention of BAR becomes a performance bottleneck to read

GPU memory. We argue that even though the peak bandwidth

to read GPU memory is not as fast as that to DRAM, it is

still much faster than reading from state-of-the-art PCIe®4.0

NVMe SSDs [34] (which have a maximum sequential write

bandwidth of 2.7GB/s). Furthermore, Figure 10(d) indicates

that BAR does not affect writes.

We also observe that Portus maintains its peak bandwidth

closer to the RNIC limit when the data transmission package

size exceeds 512KB. In other words, Portus can take full

advantage of RDMA network bandwidth to transmit data

larger than 512KB. Recall the size of the seven popular DNN

models in Table II that the average size of a model layer is

around 2.5MiB, implying that Portus fits the DNN models

checkpointing and restoring scenarios.

C. Checkpointing and Restoring Operations

To evaluate Portus’s performance, we measured the check-

pointing and restoring operation time for various models run-

ning on Client-Volta. We compare Portus’s performance with
not only the shared BeeGFS on PMEM (denote as BeeGFS-

PMEM), but also the local ext4 filesystem on NVMe SSDs

without networking overheads (denote as ext4-NVMe). Our

results demonstrate that Portus significantly reduces the cost

of checkpointing and restoring.

1) Checkpointing Time: Figure 11 illustrates the check-

pointing time of various DNN models with different storage

options, where Portus is 8.49x faster than remote BeeGFS-

PMEM and 8.18x faster than local ext4-NVMe on average.

This is due to the reduction in serialization overhead and

65

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Bandwidth and latency of Portus Datapath between different storage devices

Fig. 11. Checkpointing time of different models

data copy time between different devices. Especially, Portus

performs up to 9.23x faster than BeeGFS-PMEM in ResNet50

due to its higher metadata operation overhead introduced by

small file writes (e.g., path resolution and permission check).

2) Restoring Time: We then evaluated the restoring perfor-
mance of Portus and observed that it consistently outperformed

BeeGFS-PMEM and ext4-NVMe. Figure 12 illustrates that,

on average, Portus achieves 5.15x and 3.83x faster restor-

ing time than BeeGFS-PMEM and ext4-NVMe, respectively.

For ResNet50, Portus achieves an impressive 7.0x speedup

compared to BeeGFS-PMEM. The improved performance is

mainly attributed to the reduction in serialization and data copy

overheads. However, it is worth noting that the performance

gain of Portus on restoring is relatively lower than checkpoint-

ing because GPU-Direct Storage allows loading checkpoint

files from storage devices to GPU memory without involving

the main memory.

Fig. 12. Restoring time of different models

D. Checkpointing Breakdown

We perform a checkpointing time breakdown analysis of a

Bert model to study the advantages of Portus in detail. We

use NVProf to record GPU overheads, strace to monitor
syscalls, and ibdump to keep track of RDMA requests.

Figure 13 shows that Portus costs much less time compared

to ext4-NVMe and BeeGFS-PMEM. We find that the RDMA

data transmission dominates the Portus checkpointing time

while a constant time for serialization and cuMemcpy con-

tributes 46.5% and 57.2% of the total time to ext4-NVMe and

BeeGFS-PMEM, accordingly. We also observe that the local

ext4-NMMe is much slower than Portus because a local file

system takes 53.7% of time to interact with block devices via

kernel crossings. Besides, Portus costs less RDMA time than

BeeGFS-PMEM because GPU-RDMA that Portus adopts is a

time-efficient one-sided protocol while BeeGFS-PMEM uses

a more time-consuming two-sided protocol RPCoRDMA [35].

Fig. 13. Breakdown Analysis of Bert Checkpointing Time

E. Distributed Large Model Training

We evaluate Portus’s performance in large model check-

pointing with distributed model parallel training, which gen-

erates highly concurrent checkpointing requests with complex

checkpoint structures. We integrate Portus into Megatron [9],

a widely-used model parallelism framework for training large

language models (LLMs). The GPT model is trained on

two Client-Ampere nodes with 16 NVIDIA A40 GPUs. To

demonstrate the scalability of Portus towards exascale mod-

els, we scaled the parameter size from 1.5 Billion to 22.4

Billion. Figure 14 shows that dumping a checkpoint file

of a GPT model with 22.4 billion parameters using the

torch.save() interface (used by traditional checkpointing
and CheckFreq) to the shared BeeGFS storage takes more than

120 seconds, slowing down the overall training throughput and

preventing finer-grained checkpointing policies. In contrast,

Portus achieves an average speedup of 8.18× and takes only

15 seconds to dump the model with 22.4 billion parameters

(89.6GB of data), highlighting its significant performance gain.

66

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

Note that it is the time improvement for one checkpoint instant,

the performance gain of Portus is accumulated when the

training keeps proceeding with a rapid checkpoint frequency.

We foresee that Portus saves more than 1.5 hours for training if

the model does checkpoints every half an hour and runs for 24

hours. The time saved from Portus becomes 10.7 and 23 hours

if the model runs for one week and one month, respectively.

Fig. 14. Operation time comparison of dumping a checkpoint of GPT model
via Portus and torch.save()

Portus’s efficient checkpointing datapath and management

structure contribute to higher training throughput and finer-

grained fault-tolerance guarantees. As illustrated in Figure 15,

Portus improves the training throughput of the GPT model

with 22.4 billion parameters by 2.6×. We also foresee Portus
supporting 14,400 more iterations than the state-of-the-art

CheckFreq if the model runs for 24 hours. This is due to

the dominance of checkpointing costs when applying finer-

grained checkpointing policies. Portus reduces this cost sig-

nificantly with its efficient three-level structure and zero-copy,

serialization-free datapath.

Figure 16 implies that Portus also enriches GPU utilization

because the checkpointing optimization reduces stalls for I/O.

According to the 500-second GPU utilization profiling trace of

training the GPT-22.4B model in the figure, we can see that

Portus assists in achieving the average utilization of 76.4%,

compared with less than 43% by CheckFreq.

VI. LESSONS LEARNED

In this section, we summarize three lessons that we learned

from this research.

Checkpointing data path should be condensed as much
as possible: Traditional checkpointing data path from GPU to

Fig. 15. Overall training time comparison of GPT model via Portus and
CheckFreq

Fig. 16. GPU utilization of training the GPT model with 22.4 billion
parameters with Portus and CheckFreq

a storage server slows down applications because of multiple

data copies and context switches between user and kernel

mode. Therefore, systems can benefit from fast hardware and

protocols (i.e., PMEM, InfiniBand, and RDMA) when the data

path between compute and storage nodes shortens as much as

possible by reducing unnecessary data copies. Portus optimizes

the checkpointing efficiency because it offers a peer-to-peer

data path between GPU memory and PMEM. Portus avoids

data copies between user and kernel spaces on both compute

and storage nodes via an inverse data access pattern (i.e.,

PMEM reads data from GPU memory instead of GPU memory

writes to PMEM).

Redundant serializations should be eliminated as much
as possible: Data serialization is a common time-consuming
process in any application involving checkpointing to save

the state of applications to a file and recover them when

needed. We observe that serialization costs over 30% of a DNN

checkpointing time. We also find that a set of serializations

becomes redundant once an application generates a sequence

of checkpoints, where only the last version is effective for

recovery. In other words, as soon as an application creates a

new version of a checkpoint, it can abandon all the previous

versions, leaving the labor for the serializations for every

predecessor checkpoint in vain. Therefore, we can reduce

a significant amount of time in finer-grained checkpointing

systems if we can eliminate serializations for intermediate

checkpoints. Portus can boost the checkpointing performance

because the state of GPU memory is dumped to a three-level

index structure on PMEM without serialization. Portus will

perform serialization only upon an archive of a checkpoint

to file systems such as Lustre. Note that serialization in

Portus does not affect training efficiency because it operates

asynchronously.

Efficient checkpointing and management are crucial for
large models: As the trend toward training large models
with hundreds of billions of parameters continues, distributed

model parallel training becomes increasingly important. This

new training methodology poses challenges for checkpointing

systems, as the large model is partitioned across many GPUs,

with each GPU dumping its own checkpoints. Aggregating

checkpoints from all GPUs to restore the model on failures

introduces increasing checkpoint management complexity and

67

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

requires an efficient methodology to store multiple checkpoints

in shared storage with minimal stalls. Portus is natively de-

signed for distributed training scenarios with complex check-

point structures and has good potential for deployment on

larger-scale production systems.

VII. RELATED WORKS

DNN checkpointing and datapath optimization are

discussed in several prior works. However, to the best of

our knowledge, this research is the first work that can do

iteration-based fine-grained checkpointing with almost zero

overhead. In this section, we first briefly summarize some

optimizations on DNN checkpointing, then we introduce

several data transmission path optimizations and finally

propose some persistent memory management works.

DNN Checkpointing: With the growth of DNN model

complexity and data size, traditional epoch-based DNN

checkpointing methods fail to persist real-time model states

and waste computation to restart when the training job

stops unexpectedly. To do fine-grained checkpointing with

low overhead, CheckFreq [16] introduced an asynchronous

checkpointing method to cover I/O by computation. However,

it does not optimize data transmission itself so the overhead

is noticeable for multi-tenant training workloads. For

algorithms, Check-N-run [15] and Qiao et al. [13]’s method

introduced incremental checkpointing. For devices, Wood et

al. [36] proposed checkpointing using PMEM, but did less

optimization. And for multi-tenant checkpointing, Jeon et

al. [37] analyzed the overheads of multi-tenant DNN training

jobs. However, Portus is different from above, we focus on

the fine-grained checkpointing in multi-tenet workload.

Datapath Optimization: There are several existing works
concentrating on optimizing the data transmission path

between GPU and other devices. The datapath between SSD

and GPU can be highly optimized by NVIDIA GPU direct

storage [38], Assise [39], and P2PSSD-GPU [40]. However,

there is still an I/O performance gap between NVMe SSDs

and persistent memories [41]. GPM [42] was the first work

to access persistent memory by GPU threads directly but

need to compute nodes equipping both specific GPU and

persistent memory, which is very rare because commercial

Optane Persistent Memory requires specific motherboards

and CPU. Also, there is heavy labor to rewrite the low-level

application code to fit GPM even we have new hardware.

In the data transmission domain, Wei et al.’s work [43]

gave invaluable advice on accessing PMEM via RDMA.

Ekko [44] proposed a peer-to-peer transmission protocol for

deep learning recommenders, enabling parameter passing

from the training cluster to the inference cluster without

intermediate storage. Different from these existing works,

however, Portus provides a more efficient zero-copy datapath

with almost no code modification and better portability.

Persistent Memory Utilization: Efficient persistent

memory management plays an important role in Portus.

NVALLOC [45], and Intel PMDK [46] proposed novel

allocation and management methods for PMEM. ctFS [47]

introduced a hierarchical structure to manage files on PMEM

under devdax mode. Besides, there is an abundance of

general-propose filesystems for PMEM including PMFS [48],

NOVA [49], and WineFS [50]. However, skewing to generality

may lose the performance gain on specialized workloads. So

Portus choose a different approach and designed a lighter-

weight, application-specialized index structure to manage

DNN checkpoints on PMEM efficiently.

VIII. CONCLUSION

The rapid evolution of DNN model complexity and trends

in multi-tenant training make it more challenging to develop

prompt finer-grain checkpointing mechanisms. To solve this

challenge, we proposed Portus, which builds a dedicated peer-

to-peer datapath and a three-level index structure between

GPU memory and PMEMs for checkpointing without serial-

ization and kernel crossings.We developed a Portus prototype

and integrated it into a production AI cluster. We evaluated

it using 76 individual DNN training jobs. We further tested

Portus under the distributed multi-node model checkpointing

using a large language model, GPT. The experimental results

show that Portus improves the performance of DNN models

checkpointing and restoring by up to 9.23x and 7.0x. Reducing

checkpointing time implies that Portus can reduce the overall

training time.

REFERENCES

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[4] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[5] Hossein Hadian, Hossein Sameti, Daniel Povey, and Sanjeev Khudanpur.
End-to-end speech recognition using lattice-free mmi. In Interspeech,
pages 12–16, 2018.

[6] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

[7] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[8] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael Niemier, Jason
Cong, Yu Hu, and Yiyu Shi. Scaling for edge inference of deep neural
networks. Nature Electronics, 1(4):216–222, 2018.

[9] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Efficient large-
scale language model training on gpu clusters using megatron-lm. In
SC20:Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1–15, 2021.

68

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

[10] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, T. S. Eu-
gene Ng, and Yida Wang. Gemini: Fast failure recovery in distributed
training with in-memory checkpoints. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, page 364–381,
New York, NY, USA, 2023. Association for Computing Machinery.

[11] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang
Chen, Kaiming Ouyang, Franck Cappello, and Zizhong Chen. Ft-cnn:
Algorithm-based fault tolerance for convolutional neural networks. IEEE
Transactions on Parallel and Distributed Systems, 32(7):1677–1689,
2020.

[12] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram
Saraph, Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat,
Brandon Lucia, and Carole-Jean Wu. Understanding and improving
failure tolerant training for deep learning recommendation with partial
recovery. In A. Smola, A. Dimakis, and I. Stoica, editors, Proceedings
of Machine Learning and Systems, volume 3, pages 637–651, 2021.

[13] Aurick Qiao, Bryon Aragam, Bingjing Zhang, and Eric Xing. Fault
tolerance in iterative-convergent machine learning. In International
Conference on Machine Learning, pages 5220–5230. PMLR, 2019.

[14] Sian Jin, Sheng Di, Xin Liang, Jiannan Tian, Dingwen Tao, and Franck
Cappello. Deepsz: A novel framework to compress deep neural networks
by using error-bounded lossy compression. In Proceedings of the 28th
international symposium on high-performance parallel and distributed
computing, pages 159–170, 2019.

[15] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudi-
gere, Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyan-
skiy, and Murali Annavaram. {Check-N-Run}: a checkpointing system
for training deep learning recommendation models. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), pages 929–943, 2022.

[16] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram.
{CheckFreq}: Frequent,{Fine-Grained} {DNN} checkpointing. In 19th
USENIX Conference on File and Storage Technologies (FAST 21), pages
203–216, 2021.

[17] Jang Insu, Yang Zhenning, Zhang Zhen, Jin Xin, and Chowdhury
Mosharaf. Oobleck: Resilient distributed training of large models using
pipeline templates. 2023.

[18] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao
Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. Bamboo:
Making preemptible instances resilient for affordable training of large
{DNNs}. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 497–513, 2023.

[19] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram
Saraph, Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat, Bran-
don Lucia, et al. Understanding and improving failure tolerant training
for deep learning recommendation with partial recovery. Proceedings of
Machine Learning and Systems, 3:637–651, 2021.

[20] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[21] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.
Improving language understanding by generative pre-training. 2018.

[22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[23] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria
Lin, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[24] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
Zero: Memory optimizations toward training trillion parameter models.
In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[25] NVIDIA. NVIDIA Peer Memory. https://github.com/Mellanox/nv peer
memory. Accessed: 2022-11-13.

[26] Andy Rudoff. Persistent memory programming. Login: The Usenix
Magazine, 42(2):34–40, 2017.

[27] Anaconda Inc. Anaconda. https://www.anaconda.com/. Accessed: 2022-
11-14.

[28] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings

of the 22nd ACM international conference on Multimedia, pages 675–
678, 2014.

[29] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer,
Trevor Darrell, and Saining Xie. A convnet for the 2020s. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11976–11986, 2022.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Communications
of the ACM, 60(6):84–90, 2017.

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10012–10022,
2021.

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[33] Qizhe Xie, Guokun Lai, Zihang Dai, and Eduard Hovy. Large-
scale cloze test dataset designed by teachers. arXiv preprint
arXiv:1711.03225, 2017.

[34] Samsung. Samsung NVMe SSDs. https://semiconductor.samsung.com/
ssd/datacenter-ssd/pm9a3/. Accessed: 2022-11-19.

[35] Khaled Z Ibrahim, Paul H Hargrove, Costin Iancu, and Katherine Yelick.
An evaluation of one-sided and two-sided communication paradigms on
relaxed-ordering interconnect. In 2014 IEEE 28th international parallel
and distributed processing symposium, pages 1115–1125. IEEE, 2014.

[36] Andrew Wood, Moshik Hershcovitch, Ilias Ennmouri, Weiyu Zong,
Saurav Chennuri, Sarel Cohen, Swaminathan Sundararaman, Daniel
Waddington, and Peter Chin. Towards fast crash-consistent cluster
checkpointing. In 2022 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–8. IEEE, 2022.

[37] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. Analysis of {Large-Scale}{Multi-
Tenant}{GPU} clusters for {DNN} training workloads. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 947–
960, 2019.

[38] NVIDIA. NVIDIA GPU Direct Storage. https://developer.nvidia.com/
blog/gpudirect-storage/. Accessed: 2022-11-14.

[39] Thomas E Anderson, Marco Canini, Jongyul Kim, Dejan Kostić,
Youngjin Kwon, Simon Peter, Waleed Reda, Henry N Schuh, and Em-
mett Witchel. Assise: performance and availability via nvm colocation
in a distributed file system. arXiv preprint arXiv:1910.05106, 2019.

[40] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and Mark Silberstein.
SPIN: Seamless operating system integration of Peer-to-Peer DMA
between SSDs and GPUs. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 167–179, Santa Clara, CA, July 2017.
USENIX Association.

[41] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R
Dulloor, et al. Basic performance measurements of the intel optane dc
persistent memory module. arXiv preprint arXiv:1903.05714, 2019.

[42] Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. Gpm: leverag-
ing persistent memory from a gpu. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 142–156, 2022.

[43] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and Binyu Zang.
Characterizing and optimizing remote persistent memory with {RDMA}
and {NVM}. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 523–536, 2021.

[44] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong, Feng Lin,
Junyu Wu, Yongsheng Li, Haidong Rong, Pierre-Louis Aublin, et al.
Ekko: A {Large-Scale} deep learning recommender system with {Low-
Latency} model update. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 821–839, 2022.

[45] Zheng Dang, Shuibing He, Peiyi Hong, Zhenxin Li, Xuechen Zhang,
Xian-He Sun, and Gang Chen. Nvalloc: rethinking heap metadata
management in persistent memory allocators. In Proceedings of the
27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 115–127, 2022.

[46] Intel. PMDK: Persistent Memory Development Kit. https://pmem.io/.
Accessed: 2022-11-14.

[47] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael Stumm, and
Ding Yuan. {ctFS}: Replacing file indexing with hardware memory

69

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

translation through contiguous file allocation for persistent memory. In
20th USENIX Conference on File and Storage Technologies (FAST 22),
pages 35–50, 2022.

[48] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
software for persistent memory. In Proceedings of the Ninth European
Conference on Computer Systems, pages 1–15, 2014.

[49] Jian Xu and Steven Swanson. {NOVA}: A log-structured file system
for hybrid {Volatile/Non-volatile} main memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16), pages 323–
338, 2016.

[50] Rohan Kadekodi, Saurabh Kadekodi, Soujanya Ponnapalli, Harshad
Shirwadkar, Gregory R Ganger, Aasheesh Kolli, and Vijay Chi-
dambaram. Winefs: a hugepage-aware file system for persistent memory
that ages gracefully. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, pages 804–818, 2021.

70

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 15:05:42 UTC from IEEE Xplore. Restrictions apply.

