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ABSTRACT
Acquiring data from scientific simulations for analytical pur-
poses is inherently challenging due to the complex and irreg-
ularly shaped regions within which the data resides, particu-
larly when using self-describing data formats. The process
of region-based data distillation becomes even more ardu-
ous when employing persistent memory or parallel file sys-
tems. To tackle this challenge, we introduce RASTER (Region-
Aware Self-describing daTa optimizER), a lightweight mid-
dleware designed for region-aware data preprocessing. RAST-
ER dynamically reorganizes data into variable groups based
on regional identifiers during runtime, thereby eliminating
the need for sequential searches to locate the required data.
We have developed a prototype of RASTER and successfully
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integrated it into three distinct computing environments: a
single-node server equipped with Intel® Optane™ DC per-
sistent memory, the Huawei® OceanStor cloud storage plat-
form, and the Sunway TaihuLight supercomputer. We then
conducted a thorough evaluation of the RASTER prototype
on the latter two platforms using a real-world scientific ap-
plication, CESM (Community Earth System Model). Our ex-
perimental results demonstrate that RASTER enhances data
acquisition performance by up to 2.83× and achieves a 2.36×
speedup over conventional netCDF and the state-of-the-art
ADIOS2. Additionally, RASTER significantly reduces mem-
ory usage by up to 400%, showcasing its scalability potential.

CCS CONCEPTS
• Software and its engineering → File systems man-
agement; • Computer systems organization → Cloud
computing.
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1 INTRODUCTION
Scientific applications tend to generate and analyze a large
amount of high-dimensional data in self-describing file for-
mats such asHDF5 [16], netCDF [31], ADIOS [26], ASDF [21],
FITS [36], and Zarr [15]. Improving the I/O performance of
self-describing files is a long-standing problem, with several
solutions proposed over the years. Studies such as PLFS [9],
ADIOS [26], ADIOS2 [19], PnetCDF [25], and HDF5-PLFS
plugin [28] aim to improve the parallelism of the data. Other
optimizations, such as the combination of I/O operations
and the joining of heterogeneous data sets, make data ac-
cess more efficient and convenient [14, 18]. Managing self-
describing data using chunking and indexing methods is
crucial to optimize partial dataset acquisition and metadata
querying. Bitmap indexing [10, 11, 20] and chunk sorting-
based data re-organization [12, 13] accelerate dataset re-
trieval, while metadata indexing [40] enhances attribute
querying.

However, domain scientists expect more than general I/O
optimizations for self-describing data as they usually focus
on a small portion of data out of the entire dataset, which
consists of a specific set of variables. The data is often buried
irregularly in files, whichmakes it difficult to organize and re-
trieve data. How to efficiently extract and acquire demanded
data from an enormous dataset remains a crucial and growing
problem, especially in fields of high energy physics [27], com-
putational molecular dynamics [3], and climatology [24, 37].
Although next-generation storage devices such as per-

sistent memory achieve better I/O throughput and lower
latency [30], data acquisition in self-describing files is not
accelerated as expected. In particular, heavy software stacks
of the I/O libraries and poor data locality mean that hard-
ware performance cannot be fully utilized. For example, the
Community Earth System Model (a.k.a. CESM) usually reads
a complex regional dataset (e.g., the Pacific Ocean dataset)
from netCDF files into memory for further analysis. With
the existing interface, CESM has to read a mixed dataset
containing both desired and unrelated data according to
the rectangle array (i.e., hyper-slab) access pattern. Reading
the mixed dataset increases the I/O time and occupies more
memory for the unrelated data. We learned from real-world
applications that most regional division information is de-
terministic during the compute stage and has already been
written to files as an array named REGION_MASK. Unfor-
tunately, to our best knowledge, no approaches use such
information to improve data acquisition efficiency. For ex-
ample, the Weather Research and Forecasting (a.k.a. WRF)
application writes the simulated data by variables instead

of regions because region boundaries are usually irregular
and hence hard to divide with existing interfaces. Although
the reason is understandable, it inconveniences users and
systems when performing complex data analysis.

As a common optimization approach, HDF5 grouping and
chunking provides a flexible interface to manage hierarchical
and heterogeneous scientific data [17]. Despite this ingenious
design, there are many restrictions on this interface. Unfor-
tunately, the read pattern of the applications usually does
not match the write patterns, making it difficult to benefit
from the chunking interface. For example, the read perfor-
mance would be degraded if an application tries to read a
row-wise chunked dataset by column or read a rectangle
chunked dataset in irregular regions. Besides, users often
misuse the HDF5 grouping interface to divide and manage
many related multi-dimensional datasets to different groups.
The misusage makes it even harder to retrieve the desired
data. This ineffective utilization inspires us to repurpose the
grouping and chunking interface to manage the datasets
with richer semantics without introducing additional labor
for API modification.

Based on these case studies, we present RASTER (Region-
Aware Self-describing daTa optimizER), a middleware li-
brary to optimize irregular self-describing file accessing. It
repurposes a set of existing interfaces for transparency and
access optimization. RASTER partitions a large dataset into
many variant-length chunks by mesh building mechanism
and classifies these chunks to distinct HDF5 groups by the
region semantics. When performing a regional read, only
data related to the desired part will be brought to memory,
significantly reducing I/O time and memory consumption.
RASTER dynamically merges fix-sized HDF5/netCDF chunks
with the same region identifier, producing fewer variant-
length chunks. Consequently, RASTER reduces the number
of iterative syscalls for retrieving chunks and the number
of copies between kernel and user mode. We published the
source code of RASTER at https://github.com/ShanghaiTech-
LIONLAB/RASTER-SoCC24.

The main contributions of this paper include:

• To our best knowledge, RASTER represents the first li-
brary to optimize data organization for self-describing
files based on region semantics.

• Instead of writing new APIs, RASTER repurposes the
existing HDF5 grouping interfaces to conduct complex
regional data accesses. RASTER ensures users achieve
performance gain with the limited refactoring of exist-
ing code (within ten LOCs).

• RASTER enhances data acquisition by region iden-
tifiers while reducing software overhead, I/O access
time, and memory usage.

https://doi.org/10.1145/3698038.3698526
https://github.com/ShanghaiTech-LIONLAB/RASTER-SoCC24
https://github.com/ShanghaiTech-LIONLAB/RASTER-SoCC24
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• We have developed a RASTER prototype, integrated
it into various computing platforms, and conducted
extensive experiments under both benchmarks and
real-world scientific applications.

The rest of the paper is organized as follows. Section 2
provides the background and motivation of this research. De-
sign and implementation details of RASTER are proposed in
Section 3, followed by an evaluation shown in Section 4. Sec-
tion 5 discusses some lessons learned from this research, and
Section 6 summarizes the related works. Finally, Section 7
concludes this paper.

2 BACKGROUND AND MOTIVATION
2.1 Challenges of HDF5/netCDF on fast

storage
HDF5 [16] is a high-performance software library that pro-
vides a fast I/O interface to manage, access, and store hetero-
geneous scientific data. It is popular in the management of
complex hyper-dimensional HPC data for its fewer restric-
tions on the number or size of data objects [27, 39]. Based
on the HDF5 library, netCDF provides a higher level and
more user-friendly interface for climatology, meteorology,
oceanography, and molecular dynamics [1, 3, 4].

Management and accessing interleaved high-dimensional
data is challenging. For example, computational fluid dynam-
ics (CFD) applications like XCompact3D [6] use HDF5 to
manage turbulence trajectories for visualizations. It stores a
chronological series of particles’ spacial positions and veloci-
ties in the form of a 4-dimensional HDF5 dataset. The dataset
also contains environmental properties, which makes it hard
to strip off particle values for the investigation perspectives.
It also introduces read and memory overheads for unnec-
essary data. Molecular Dynamics (MD) simulators such as
LAMMPS [3] and GROMACS [2] also use HDF5 or netCDF
to manage traces via checkpointing. They divide the data
into multiple sub-folders using the HDF5/netCDF grouping
interface, each of which folder represents a sub-trace with
a pre-defined time phase. It is convenient to read the entire

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Time Cost

NVRAM

SSD

HDD

Software Overhead on Different Devices
netCDF-chunking
Yardstick

Figure 1: Read performance on different devices

data chronologically but hard to retrieve specific variables
as it has to traverse multiple folders [23, 32].

As a common technique for partial dataset accessing, HDF5
chunking divides a large array into many fixed-size chunks,
while a chunk is the basic I/O access unit [17]. With the
chunking technique, the HDF5 library first looks for chunks
belonging to the desired hyper-slabs in B-tree, then reads and
copies them into the user’s buffer. Compared with sequential
data accesses, chunking layout enriches contiguous reads
to a small portion of an N-dimensional array. The chunking
performs well for many partial read scenarios as it reduces
unnecessary data traverses in the sequentially stored dataset.
The dis-contiguous access delay becomes smaller on de-

vices with better random I/O performance. However, the
data management overhead for transformation and declara-
tion becomes noticeable on NVRAM because of its ultra-low
latency. We ran a test to evaluate the performance of reading
a 10GB netCDF dataset with the commonly used netCDF-
chunking layout on three types of storage devices: Hard Disk
Drive (HDD), Solid State Drive (SSD), and Intel® Optane™
DC persistent memory (NVRAM) (shown in Fig. 1). The yard-
stick in the figure represents the peak performance of each
device under the fully contiguous I/O pattern. We measured
the yardstick by sequentially reading a 10GB netCDF file
while neglecting its data format. Besides the performance
improvement on faster devices, we observe that the access
time of the netCDF-chunking layout is 10.3%, 9.3%, and 34.3%
slower than the yardsticks accordingly. Note that netCDF
introduces random reads to retrieve chunking indices, which
causes the gap between the yardstick and netCDF chunking
even under the sequential read scenario. The results support
our findings that the HDF5 and netCDF data management
overhead is getting more noticeable on fast storage devices
with low latency.

Motivation 1: Self-describing data management mecha-
nisms such as HDF5 and netCDF can not take full advantage
of low-latency storage devices due to the overhead of soft-
ware stacks. There is a great need to develop a lighter-weight

Figure 2: (a) World Region (b) Memory amplification
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Figure 3: Difference on data layout between original
HDF5/netCDF chunking and our design

data optimizer for HDF5/netCDF to work with fast storage
devices like NVRAM.

2.2 Inefficiencies in data pre-processing
Besides performance degradation by dis-contiguous data ac-
cesses, extracting desired data from regular-shaped arrays
like hyper-slabs or bounding boxes consumes additional
memory and processing time. For example, to obtain the
Atlantic Ocean data from the CESM global dataset (Fig. 2(a)),
climate scientists have to read the entire dataset into mem-
ory and crop the Atlantic with the mask variable. Note that
scientific variables have rich semantics (e.g., longitude, lati-
tude, altitude, time intervals), and domain scientists usually
examine the data that belongs to specific regions [24, 37]. It
is worth noting that the term region in HDF5 and netCDF
is not restricted to geographic terrains. It can represent any
user-defined area of data subsets. For example, a region can
be a given spatial domain in high-energy particle investi-
gations, a velocity range in computational fluid dynamics
simulations, or political territories such as states or districts.
The same characteristic of different types of regions is that
they are often irregular in shapes so that the data with com-
plex semantics scatter on the diverse HDF5 groups or netCDF
chunks.

The consequence of dis-contiguous data management and
accessing is that applications have to read multiple rectangle
arrays of data (hyper-slabs in HDF5/netCDF) that contain
the desired data. This data acquisition procedure is neither
temporal nor spatial efficient because hyper-slabs read de-
sired data along with unrelated ones. The increased data
size requires additional read and process time to distill the
desired data. Besides, it requires more memory to hold the
data. We ran a test to evaluate the memory utilization of the
CESM dataset and found a maximum 4.2× memory amplifi-
cation when accessing the Pacific Ocean data shown above

Scientific Computation
Applications (e.g., CESM,

WRF, HACC)

Data Analysis
and Visualization 

Applications
…

RASTER
LibrarynetCDF Library

HDF5 Library

Underlying Filesystems
(e.g., XFS, ext4, Lustre)

I/O Interfaces
(e.g., POSIX, MPI-I/O)

Region Mesh Builder

Chunk Index Manager

Metadata
Handler

(Reader, Writer)

Chunk Data
Handler

(Reader, Writer)

RASTER

Figure 4: System Overview of RASTER

(illustrated in Fig. 2(b)). This means that to obtain 379MB
of Pacific data, hyper-slabs have to read 1,586MB of data. It
also proves that time consumption is more critical as distill
operations are required. It implies why scientific applications
are eager for efficient I/O even though the bandwidth and
latency are getting better.

Motivation 2: There is a great need to design a new data
layout that supports high-performance I/O while consider-
ing data semantics. In this way, the space and time overhead
of reading useless data can be reduced, and scientific compu-
tation and data analysis applications can be accelerated.

These motivations drive us to develop a region-aware self-
describing data optimizer (RASTER), a library that optimizes
data acquisition and storage layout considering the access
patterns and semantics of data. The key challenge of RASTER
is to pass semantics like region information to file level and
support complex regional reads. Another challenge is to
achieve these new functions while not affecting existing
parts or bringing additional software overhead.

3 DESIGN
3.1 Design Goals
RASTER should retain the original self-describing data for-
mat without affecting original functions or data operations.
Second, RASTER should utilize device I/O performance by
reducing dis-contiguous accesses. Third, RASTER aims to
manage the dataset according to its semantics to enhance
the efficiency in data acquisition and reduce memory usage.

As shown in Fig. 3(a), RASTER uses a set of region-aware,
variant-length chunks to store multi-dimensional arrays in-
stead of using the original fixed-sized chunks shown in Fig.
3(b). Therefore, applications can perform more contiguous
reading when acquiring datasets, and software overhead is
mitigated by reducing chunk numbers. Also, RASTER classi-
fies chunks by region semantics and stores them in different
groups according to the classification.
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3.2 RASTER Architecture
Fig. 4 demonstrates the RASTER architecture. RASTER sits
between netCDF and HDF5, and provides a standard netCDF
interface to users. RASTER repurposed the HDF5 grouping
interface to maintain transparency to both users and the un-
derlying file system. RASTER Library overwrites the netCDF
variable definition and functions, including chunking, read-
ing, and writing while keeping the rest of the netCDF li-
brary unchanged. Developers only need to change the pa-
rameter named size_t* chunksize to an array that con-
tains the region mask with less than ten LOCs modifica-
tion. RASTER traps the multi-dimensional data I/O requests
via LD_PRELOAD and stores the data as a group of objects.
Instead of grouping data by variable types, Region Mesh
Builder in RASTER extracts regionIDs from the dataset and
guides Chunk Index Manager to group data into variant-
length chunks by the IDs. Metadata Handler maintains an
index table that stores the paired information of region iden-
tifier and the locations of corresponding chunks in metadata
to guide Chunk Data Handler to perform actual data read
and write.
Region Mesh Builder scans the data to be written on-

the-fly and collects information on HDF5/netCDF chunks,
including regionIDs, sizes, and offsets. Region Mesh Builder
then combines the HDF5/netCDF chunks with the same re-
gionID into a contiguous variant-length RASTER chunk and
stores the RASTER chunk attributes (e.g., identifiers, offset,
length, etc.) (detailed in Section 3.3.1). in a mesh structure
Chunk Index Manager takes the RASTER chunk at-

tributes from the mesh structure as a guide to aggregate the
chunks by regionIDs. It then constructs a KV-based index
table for each regionID, where the key is the regionID and
the value is the corresponding RASTER chunk information
list (detailed in Section 3.3.2).

Metadata Handler maintains metadata of HDF5/netCDF
files. Upon writing data in regions, Metadata Handler creates
an HDF5 group structure for each regionID to store its index
table and HDF5/netCDF attributes. When reading data with
a given regionID, it loads the corresponding index table into
memory to locate RASTER chunks associated with the ID.
(detailed in Sections 3.3.3 and 3.3.4.

Chunk Data Handler performs the actual reads and
writes of RASTER chunks to underlying file systems. Note
that RASTER achieves better I/O performance by replacing
the ordinary fixed-size HDF5 chunking operations with con-
tiguous variant-length chunks. (detailed in Sections 3.3.3 and
3.3.4).

3.3 RASTER Operations and
Implementation

In this section, we discuss the general operations of RASTER
in building mesh structures, constructing index tables, and
writing and reading data. We implement a RASTER proto-
type and integrate it into the HDF5/netCDF stack using a
dynamical-linked library.

3.3.1 Mesh Construction. This subsection explains how Re-
gion Mesh Builder defines RASTER chunking variables in the
function nc_def_var_chunking.
To write a 3-dimensional variable (𝑑 × 𝑚 × 𝑛) with a

2-dimensional region mask (𝑚 × 𝑛), Region Mesh Builder
first constructs a region mesh structure for the variable.
Recall that with predefined (𝑑 × ℎ × 𝑤)-shaped chunks,
HDF5/netCDF partitions variables into an array of fix-sized
meshes, each of which is 𝑑 in-depth, ℎ in height and 𝑤 in
width. Let us use Fig. 3 as a simplified example to demon-
strate the idea, where 𝑑 = 1. Suppose ordinary HDF5/netCDF
divides the variables representing the geographic world in
a way of 20 columns by 20 rows, the variables are grouped
into 400 fixed rectangles, each of which is a (ℎ ×𝑤 ) mesh
(shown in Fig. 3(b)).

Note that some sequence of meshes in a column repre-
sents land variables while some represent ocean ones, Region
Mesh Builder merges horizontally adjacent meshes with the
same regionID and constructs a set of meshes in shapes like
(ℎ×𝑘1𝑤), (ℎ×𝑘2𝑤), . . . (ℎ×𝑘𝑛𝑤). The values (𝑘1, 𝑘2, . . . , 𝑘𝑛)
represent the number ofmergeablemeshes (a.k.a. the number
of chunks holding a specific regionID). The (𝑘1, 𝑘2, . . . , 𝑘𝑛)
vary with regionID values, leading to variant-length RASTER
chunks. As a result, Region Mesh Builder stores the RASTER
chunk attributes as {chunkID, offset, length, mixed}
in a mesh structure, where chunkID identifies a RASTER
chunk, offset is the start point of the chunk, length is the
product of the pre-defined HDF5/netCDF mesh and the num-
ber of mergeable meshes, and mixed indicates if the RASTER

Table 1: An index table example (the last row in Fig. 3)

regionID chunkID offset RASTER chunk len mixed

Ocean

1 (76, 0) (4×28) False
2 (76, 28) (4×4) True
4 (76, 52) (4×4) True
5 (76, 56) (4×8) False
6 (76, 64) (4×4) True
7 (76, 68) (4×12) False

Land

2 (76, 28) (4×4) True
3 (76, 32) (4×20) False
4 (76, 52) (4×4) True
6 (76, 64) (4×4) True
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chunk has multiple adjacent regions (e.g., the grey chunks
in Fig. 3(a)).

Let us use the last row in Fig. 3 as an example while the pre-
defined chunk shape is set to (4 × 4) (i.e., 𝑑 = 1, ℎ = 𝑤 = 4).
There are two regionIDs: Ocean and Land in the example.
The mesh structure for the two regionIDs are {(1, 2, 4, 5, 6, 7),
((76,0), (76,28), (76,52), (76,56), (76,64), (76,68)), ((4 × 28), (4 ×
4), (4 × 4), (4 × 8), (4 × 4), (4 × 12)), (False, True, True, False,
True, False)}, and {(2, 3, 4, 6), ((76,28),(76,32),(76,52),(76,64)),
(((4 × 4), (4 × 20), (4 × 4), (4 × 4))), (True, False, True, True)}
accordingly.
We want to emphasize that RASTER enables users to

pass region semantics via the existing netCDF interface
nc_def_var_chunking (int ncid, int varid, size_t*
chunksize). Instead of passing an array of fixed-size chunks
in chunksize, users can send a collection of regionID ar-
rays in chunksize. RASTER traps the parameter and for-
wards it to Region Mesh Builder if chunksize carries values
with a much smaller number of digits (e.g., 65536 as a reg-
ular chunksize vs. 7 as a regionID). In this way, Region
Mesh Builder can build region mesh structures for RASTER
variant-length chunks under the guidance of region infor-
mation without any code modification in applications.

3.3.2 Index Construction. This subsection discusses how
Chunk Index Manager constructs index tables to map re-
gionIDs with RASTER chunks. Given the mesh structure
{chunkID, offset, length, mixed} as a guide, Chunk
Index Manager constructs a KV-based index table to map
chunks to their belonging region. The key of the table is
regionID, and the value is a chunk information list, which
contains all the corresponding RASTER chunks associated
with the regionID. For example, given the mesh structure
of the last row in Fig. 3, Chunk Index Manager constructs
an index table presented in Table 1.

3.3.3 Data Writing. This subsection discusses the RASTER
data write procedure. Metadata Writer in Metadata Handler
creates and assigns an HDF5 group structure for each re-
gion to store its index table and HDF5/netCDF attributes
in the metadata of a file. Chunk Data Writer in Chunk Data
Handler then writes data in a set of RASTER chunks guided
by the index table. Upon handling mixed chunks that con-
tain data from multiple regions, the Chunk Data Handler
writes all of them in a separate group named Mixed_Chunks.
Instead of writing the mixed chunks in every correspond-
ing region group, RASTER writes them only once so that
whichever refers to them will access the shared copy. In this
way, RASTER avoids the redundant mixed chunks and the
potential data inconsistency.
Fig. 5 illustrates the data write procedure: (1) RASTER

traps the user’s write request. (2) The region mask 𝑀 is
processed by Mesh Builder, such that a variant-length chunk

Write variable 𝑉 ∈ ℝ !×#$%×#&'

with mask
𝑀 = {𝑅(, …𝑅'} ∈ ℝ #$% ×#&'

netCDF / HDF5 files

metadata Indices
4

6

Groups: Region_Chunks Group: Mixed_Chunks

Chunk Data Writer

RASTER
Mesh Builder

Metadata Writer

Chunk Index Manager

1

2

53

Figure 5: Write procedure of RASTER library

mesh is created. (3) Chunk IndexManager aggregates chunks
and constructs the index table. (4) Metadata Writer creates
region groups andwrites the index table alongwith chunking
information lists. (5) Chunk Writer receives the data chunks.
(6) Chunk Writer performs a contiguous file write for each
chunk.

3.3.4 Data Acquisition. Finally, we demonstrate how RAST-
ER reads data. Besides the existing HDF5/netCDF interfaces
that read data all at once or by hyper-slab, which is a regular-
shaped array, RASTER can acquire data by irregular-shaped
regions. RASTER first loads the metadata of a file to retrieve
the region index table by Medadata Reader in Metadata Han-
dler, then performs data acquisition by Chunk Data Reader
in Chunk Data Handler. The datapath of read is illustrated in
Fig. 6: (1) When the user acquires data in region_i (where
𝑖 is the regionID), this read request is first trapped by the
Chunk Index Manager. (2) Chunk Index Manager looks up
the index table by the given regionID and then invokes the
Metadata Handler to read the corresponding chunk info list.
(3) Metadata Reader reads the chunk info list of the desired
region. (4) Metadata Reader sends these chunk indices to the
Chunk Data Reader. (5) Chunk Data Reader performs con-
tiguous read operations to acquire these chunks. (6) Chunk
Data Reader copies desired chunks to the user’s buffer.
RASTER also supports traditional full-variable or hyper-

slab reads. But the difference is we use variant-length chunks
to reduce the number of fragmented chunks. This design
reduces software overhead because of fewer function calls
for reading chunks. In most cases, our data reading process
is faster than the original, but some corner cases need to
be improved. For example, reading a very thin hyper-slab
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Figure 6: Read procedure of RASTER library

that is perpendicular to the merging direction may cause
performance degradation. This is because the actual read size
of RASTER will be larger than the netCDF chunking layout
because our chunks are longer than the fixed-size chunks
along the merging direction.

4 EVALUATION
4.1 Experimental Setup
We seek to answer the following questions: (1) How does
RASTER perform read/write under benchmarks? (§ 4.2) (2)
What is the data acquisition performance of RASTER in a
real-world scientific simulation dataset? (§ 4.3) (3) Is RASTER
scalable? (§ ??)
Very often, self-describing files are produced by massive

parallel scientific applications, then read and analyzed by
data analysis programs. Since data may be produced by var-
ious applications, their scales, region shapes, and read pat-
terns are also varied. The evaluation experiments should
be well-designed to cover such cases. Therefore, we evalu-
ate RASTER using I/O benchmarks and various real-world
application datasets with a wide range of features and reso-
lutions. Different from the state-of-the-art parallel scientific
I/O libraries (e.g., ADIOS2 [26]) that require code modifi-
cation for the dedicated APIs, RASTER runs via the uni-
fied interface with a few changes (usually within ten lines
of code). RASTER supports data parallelism without depre-
cated PnetCDF interfaces because RASTER shares the paral-
lel HDF5 interfaces.
We first evaluated RASTER on a single-node AEP server

featuring two Intel® Xeon® Gold 6240M 2.60GHz 36-core
CPUs, 12 × 16GB Hynix DDR4-2933MHz main memories,
12× 128GB Intel® Optane™ DC persistent memory, running
Linux 5.1.0.

Figure 7: Read benchmarks on the AEP server

We then performed large-scale evaluations of RASTER on
a production cluster. The cluster consists of four Huawei®
OceanStor Pacific™ 9550 storage nodes. Each node equips
dual Intel® Xeon® Gold 6138T CPU @ 2.00GHz with 20
cores/40 threads, 384GBmemory, andMellanox Technologies
MT27800 Family IB card. Each node equips 20×8TB HDDs to
form a Huawei® Pacific™ distributed file system. We can not
run ADIOS2 tests on the Huawei® cluster by the time of the
submission as the verification of ADIOS2 is still undergoing.

Finally, we performed large-scale evaluations of RASTER
on Sunway TaihuLight. We deployed RASTER on 256 Sun-
way compute nodes equipped with Shenwei SW26010 CPUs.
Each SW26010 processor includes four core groups intercon-
necting with a network-on-chip and 32G DDR3 memory. A
Lustre parallel file system runs on top of the storage system,
which comprises one MDT and 12 OSTs. Each OST has a
storage capacity of 3.1TB, leading to a total storage capacity
of 3.6PB. We can not operate ADIOS2 tests by the time of sub-
mission because ADIOS2 is incompatible with the Shenwei
SW architecture. It takes additional efforts to port ADIOS2
for Sunway TaihuLight.

4.2 Evaluation on I/O benchmarks
In this subsection, we evaluate the random I/O access perfor-
mance of RASTER using the H5perf and nc_perf benchmark
tools from HDF5 library. RASTER treats the whole dataset
as a single region in this scenario because random accesses
do not encounter any regional semantics. The benchmark
evaluations show how RASTER performs under the worst
case where no I/O access patterns can be referenced. Figs. 7
and 8 show that RASTER outperforms the netCDF chunk-
ing mechanism and achieves up to 1.16× speedup due to
its better I/O contiguity and less overhead from the stacked
software layout.
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Figure 8: Write benchmarks on the AEP server

Besides the netCDF-chunking mechanism, we compare
RASTER with a state-of-the-art scientific I/O library called
ADIOS2 [19, 26]. We tuned parameters like chunksize and
H5ChunkDim for ADIOS2 to observe its optimal performance
as the baseline. We operated a group of weak scaling bench-
mark tests with different dataset scales on NVRAM (shown
in Figs. 7 and 8). The benchmark sets the number of processes
from 1 to 16 to read separate datasets. The per-process data
size is set at 2.2 GB, and the overall dataset scale is over 72 GB.
For read performance, we observed that RASTER achieves
at most 15.8% faster than netCDF, while ADIOS2 achieves
up to 61.1% speedup under the all-access pattern at 32 pro-
cesses. We also evaluated the write performance of RASTER
and ADIOS2, which shows RASTER achieves up to 23.7%
optimization to ordinary netCDF, and ADIOS2 is at most
65.6%. ADIOS2 achieves better performance with a more
efficient interface that bypasses the netCDF I/O routine in
addition to specially tuned parameters. It either requires code
modification or extra efforts to optimize the performance.

The benchmark is to evaluate I/O performance on random
accesses without considering region semantics. Random ac-
cess is the worst case for RASTER as its variant-length chunk-
ing and contiguous access features are invalid. However, we
observe that RASTER outperforms ordinary netCDF solu-
tions and performs closer to the state-of-the-art ADIOS2. It
proves that RASTER reduces software overhead compared to
netCDF and shows its potential in handling random access.

Real-world applications give a good account of RASTER as
they usually access data with region semantics. We want to
emphasize that the term “region" is not unique to geographi-
cal ideas. There are ample scenarios for RASTER’s abilities
as long as applications use identifiers to define the shape of
the data. RASTER manages the data in varied-length chunks
as long as applications use identifiers to define the shape of
the data. In such a way, RASTER reduces the amount of data

reads, and the data reduction rate is:

Data Reduction Rate =
𝑆𝐵𝐵∑𝑁

𝑖=1 (𝑆𝑅𝐶,𝑖 ) +
∑𝑀

𝑖=1 (𝑆𝑀𝐶,𝑖 )
(1)

where 𝑁 and𝑀 denote the number of regional chunks and
related mixed chunks, respectively. 𝑆𝑅𝐶,𝑖 and 𝑆𝑀𝐶,𝑖 represent
the 𝑖𝑡ℎ regional and mixed chunk size, respectively. 𝑆𝐵𝐵 is the
bounding box size in the ordinary data acquisition process.
Note that RASTER also takes advantage of sequential ac-

cesses because it aggregates contiguous data that belongs to
the same region into one chunk, hence the I/O speedup is:

I/O Speedup =
𝑆𝐵𝐵/𝐵𝑊𝑟𝑎𝑛𝑑

(∑𝑁
𝑖=1 (𝑆𝑅𝐶,𝑖 ) +

∑𝑀
𝑖=1 (𝑆𝑀𝐶,𝑖 ))/𝐵𝑊𝑠𝑒𝑞

= Data Reduction Rate ×
𝐵𝑊𝑠𝑒𝑞

𝐵𝑊𝑟𝑎𝑛𝑑

(2)

We can observe from Eq. 2 that the performance gain
from RASTER is two-folded: 1. it reduces the amount of data
read, and 2. it exaggerates the benefits of sequential read
by aggregating data with the same region semantic into a
contiguous one.

4.3 Evaluation on CESM dataset
We choose the Community Earth System Model [1] (CESM)
to evaluate the performance of RASTER under real-world
applications. We collected the CESM dataset from the Col-
lege of Ocean and Earth Sciences, Xiamen University. The
dataset, generated by a 20-year global ocean simulation, con-
tains more than 100 variables, while the domain researchers
only pay attention to one-tenth of the variables. Each of
the variables is a 4-dimensional array corresponding to time

Table 2: Region division of CESM global dataset

MASK_ID Name Percentage of Total Valid
≤0 Lands ∼29.8% False
1 Antarctica ∼17.7% True
2 Pacific ∼23.9% True
3 Indian ∼8.64% True
6 Atlantic ∼12.1% True
10 Arctic ∼4.12% True

Table 3: Memory consumption saved by RASTER

Region Arctic Pacific Indian Atlantic Antarctica
Memory 11.22% 34.04% 61.00% 406.76% 23.14%Saved

Region
Arctic+ Pacific+ Indian+ Atlantic+ Antarctica+
Pacific+ Indian+ Atlantic+ Pacific+ Pacific+
Indian Atlantic Antarctica Antarctica Arctic

Memory 54.87% 49.93% 157.33% 67.99% 91.01%Saved



A Data Optimizer for Region-Aware Self-describing Files in Scientific Computing SoCC ’24, November 20–22, 2024, Redmond, WA, USA

(a) Single-region read, number of regions=1

(b) Mixed (dis-contiguous+adjacent) multi-region read, number of regions=3

Figure 9: Read performance of CESM global marine dataset using different patterns

(a) Large-scale single-region read, number of regions=1

(b) Large-scale mixed (dis-contiguous+adjacent) multi-region read, number of regions=3

Figure 10: Large-scale read performance of CESM global marine dataset on Huawei® Pacific™ clusters

(𝑇 ), depth to the ocean surface (𝑑𝑒𝑝𝑡ℎ), latitude (𝑛𝑙𝑎𝑡 ), and
longitude (𝑛𝑙𝑜𝑛), the region mask is 𝑛𝑙𝑎𝑡 × 𝑛𝑙𝑜𝑛 that marks
different continents and oceans as distinct integers. Only

oceans and Antarctica are simulated, and values in positions
corresponding to other lands are filled with invalid values
(𝐹𝐿𝑂𝐴𝑇_𝑀𝐴𝑋 ) and will never be used. Table. 2 shows the
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detailed region division of these datasets, note that in this di-
vision, south of the Tropic of Capricorn is almost all marked
as Antarctica, which makes it larger than the generally ac-
cepted area. Each variable is in a separate file, with a file size
is about 2.2 GB.
We use this dataset for a coarse-grained evaluation as it

only has 6 regions representing land and five oceans. We
first conducted experiments on the single-node AEP server.
We choose 32 variables, the size of each of which is 2.2 GB,
and use MPI for parallel data analysis scenarios.

Single Region Access: Fig. 9(a) presents read time com-
parison between RASTER and netCDF-chunking to access
single-region data, including the Pacific, Arctic, Atlantic,
Indian Ocean, and Antarctica. We omitted the testing re-
sults of sequential netCDF because they are much worse
than the netCDF-chunking layout. Besides, modern scien-
tific applications rarely use the sequential netCDF layout. We
initialized the chunk shape to (1, 50, 50, 50) for both RASTER
and netCDF.
We observe from Fig. 9(a) that RASTER achieves 2.18×

speedup compared to netCDF-chunking, and 1.80× speedup
compared to ADIOS2, on average. This is because RASTER
dynamically merges the chunks with the same regionID,
which introduces better data contiguity. We also observe that
RASTER is 2.83× faster than netCDF-chunking and 2.36×
faster than ADIOS2 when reading the Atlantic data. This is
because the data lies at the extremes of the dataset requiring
much more hyper-slabs to read in netCDF-chunking. On the
contrary, RASTER only reads the chunks with Atlantic and
mixed chunks, hence reducing read time by eliminating the
number of unnecessary data read.

Dis-contiguous andMulti-regionAccess:We then eval-
uated RASTER’s performance in reading multiple regions
that consist of adjacent and disjunct regions. We observe
from Fig. 9(b) that RASTER performs on average 2.45× faster
than netCDF-chunking and 1.67× better than ADIOS2. We
observe the peak performance gain from the combination of
the Atlantic, Indian, and Antarctica regions, RASTER reaches
2.66× speedup when comparing with netCDF-chunking and
2.02× speedup when comparing with ADIOS2. This is be-
cause RASTER reads data in continuous variant-length chu-
nks, which reduces the random I/O access latency. It shows
that under complicated semantics, RASTER can accurately
target the corresponding chunks to the given regionIDs and
reduce the number of unnecessary data accesses.

Memory utilization: As discussed in Section 2.2, reading
regional data by the original hyper-slab interface requires
more memory capacity because the hyper-slab brings both
required and unnecessary data into memory at the same time.
RASTER, on the other hand, requires less memory capacity
as it only retrieves required data. We admit that RASTER can
not occupy as less memory as the theoretical value for the

regional data because of the mixed chunks, which consist
of data that belongs to other regions. But RASTER can still
consume much less memory compared to the hyper-slab
solution. Table. 3 shows how much more memory capacity
is required by netCDF-chunking than that of RASTER in all
the data access patterns discussed above. In this table, Reg.
denotes the regionID and Mem.Amp. represents the amplifi-
cation ratio of memory usage of netCDF-chunking to that
of RASTER. The higher the percentile value, the more mem-
ory is required by netCDF-chunking than RASTER, a.k.a the
more memory usage RASTER can reduce. We can find in the
table that RASTER uses less memory in all the comparison
cases and achieves up to 400% better than netCDF-chunking.
We also can observe that the memory reduction shares a
similar trend to the read size reduction, which proves the
design goal of RASTER is achieved.

4.4 Evaluation on a production cloud
cluster

We enlarged the CESM dataset to evaluate the scalability
of RASTER on a production cluster by up-scaling the time
dimension while holding the regional information to be the
same. We assigned each process on the Huawei® Pacific™
cloud storage cluster to read a 4GB dataset. RASTER will
handle 1TB of concurrent data read under the 256-process
test case.
Fig. 10 shows that on all the test cases, RASTER outper-

forms the netCDF-chunking mechanism. In the single-region
read cases, RASTER achieves 8.94× speedup when accessing
the Atlantic dataset using 128 processes (shown in Fig. 10(a)).
RASTER’s advantages in data contiguity further reduce the
number of random reads, hence eliminating a decent amount
of communication overhead on distributed file systems. In
the mixed multi-region read cases, RASTER gains a 5.11×
speedup when accessing Indian+Atlantic+Antarctica ocean
data using 256 processes. It indicates that RASTER has the po-
tential to transform scattered data access pattern into a more
contiguous one and optimize the remote I/O performance
on distributed file systems.

4.5 Evaluation on Sunway TaihuLight
We implemented RASTER on the Sunway TaihuLight super-
computing machine to evaluate the scalability of RASTER.
We enlarged the CESM dataset by up-scaling the time di-
mension while keeping the regional information constant.
Each process on the TaihuLight cluster was assigned to read
a 3GB dataset. In the 1024-process test case, RASTER can
handle 3TB of concurrent data read. We can not compare
RASTER with the state-of-the-art ADIOS2 on TaihuLight by
the time of submission because ADIOS2 is incompatible with
the Shenwei SW architecture.
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(a) Large-scale single-region read, number of regions=1

(b) Large-scale mixed (dis-contiguous+adjacent) multi-region read, number of regions=3

Figure 11: Large-scale read performance of CESM global marine dataset on Sunway TaihuLight

Fig. 11 shows the results in the normalized form. We can
observe that RASTER outperforms the netCDF-chunking
mechanism in all the test cases. RASTER achieves 5.41×
speedup when accessing the Atlantic dataset using 64 pro-
cesses in the single-region case (shown in Fig. 11(a)). RASTER’s
advantages in data contiguity further reduce the number of
random reads, eliminating the communication overhead on
distributed file systems. RASTER gains a 2.4× speedup when
accessing Antarctica+Pacific+Arctic ocean data using 256
processes in the multi-region case (shown in Fig. 11(b)). The
results indicate that RASTER can transform scattered data
access patterns into a more contiguous one and optimize the
remote I/O performance on file systems. Considering that
TaihuLight is a production system, our evaluation results
could be even better without the I/O contentions by other
applications running on it.

4.6 Evaluation on WRF Datatsets
We choose the Weather Research and Forecasting Model
(WRF) as the second real-world application to evaluate the
performance of RASTER. Different from CESM, WRF stores
more regions for administrative divisions. WRF serves as a
finer-grained test case for RASTER.We placed the evaluation
results of WRF in the appendix due to the page limits.

The WRF dataset is collected from the Hubei Meteorologi-
cal Center, China, which provides a finer-grained provin-
cial rainwater investigation (denoted as rainwater). A 2-
dimensional 𝑅𝐸𝐺𝐼𝑂𝑁𝑀𝐴𝑆𝐾 is applied to divide data into
provinces, with each province holding a unique region ID.

In this experiment, RASTER reads the rainfall variables of a
given province. The file size is 250MB per variable because
of the high resolution. The total size of the dataset with all
variables is 86.4GB. In this group of experiments, we chose 4
typical provinces in China: Hubei, Guangdong, Sichuan, and
Shandong, for evaluation.
On the local AEP server, we evaluate regional read per-

formance using 1 to 32 MPI processes. As demonstrated in
Fig.12, we can observe that RASTER also outperforms the
original for each region access pattern. Typically, RASTER
is 2.03× faster than ordinary netCDF and 1.94× faster than
ADIOS2 when reading data in Sichuan province using 32
processes. On average, RASTER performs a 1.89× speedup
to netCDF and 1.55× speedup to ADIOS2.

On the Huawei® Pacific™ storage cluster, we set 1 to 256
processes to read this dataset. To show the scalability of
RASTER on large-scale distributed storage scenarios, we en-
large this dataset by up-scaling the time dimension while
holding the regional information to be the same. In the exper-
iments running on the Huawei Cloud Storage cluster, each
process reads a 4GB dataset, hence the dataset size using 256
processes is over 1TB. These large-scale WRF tests also show
that RASTER outperforms the netCDF-chunking scheme. We
observe from Fig. 13 that RASTER gains on average 8.34×
speedup and achieves 16.59× acceleration when reading data
in Guangdong province using 128 processes. This is because
the provincial region division is complicated. RASTER identi-
fies a finer border of the adjacent provinces and, hence reads
less data than the ordinary netCDF-chunking technique.
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Figure 12: Read performance of WRF (rain water) on
the AEP server

From the evaluations of WRF, we can see that RASTER
better fits the applications with finer-grained region seman-
tics. It is because compared to ordinary netCDF-chunking,
RASTER reads much less data in a contiguous way. The com-
bined attempts on data reduction and sequential access help
RASTER optimize the data acquisition performance. Besides,
the reduced software stacks of RASTER further optimize the
data access latency.

Through the evaluation in Section 4.2, we can confirm that
RASTER has been validated on our x86-based servers with
NVMe devices. The comparisons of RASTER and ADIOS in
Figs. 7-9 are capable of validations from both benchmark
and real-world tests. Using Chinese hardware and software
(i.e. TaihuLight and Huawei clusters) is to evaluate the com-
patibility and scalability of RASTER on architectures that
are different from x86. We are open to renting cloud stor-
age instances from AWS or Alibaba to further demonstrate
RASTER’s scalability performance on larger x86-based plat-
forms.

5 LESSONS LEARNED
I/O becomes a critical problem for many scientific applica-
tions which rely on hierarchical self-describing files. Our
study shows that an oceanographic correlation analysis pro-
gram takes more than 60% time to perform data I/O. The
data management has to be carefully addressed to improve
I/O performance. Besides this, there are a few lessons we
learned from this project.
A semantic-driven data organization mechanism is

crucial to self-describing data analysis: Traditionally,

Figure 13: Read performance of WRF (rain water) on
Huawei® Pacific™ clusters

scientific data in self-describing formats are usually array-
oriented, with its semantics and possible read patterns lost
on the file level. However, most applications produce data
with complex and irregular regional semantics. It can not
only be spatial regions in geographic data but can also be
time periods and any arbitrary user-defined characteristics
such as elevation or urban/rural. RASTER can greatly boost
regional data acquisition by its region-aware partitioning
and grouping mechanism and can be integrated into appli-
cations of other domains such as fluid dynamics and high-
energy physics (e.g., HACC, Cheetah, and OnDA). Moreover,
RASTER achieves data re-organization in a reasonable time,
which is much less than data I/O costs, and it may be opti-
mized in future works.
Software overhead becomes dominant on fast stor-

age devices: We observed that when acquiring data in a
self-describing dataset, employing high-bandwidth I/O de-
vices like NVRAMs cannot enhance data processing perfor-
mance as expected. This is because software latency becomes
a dominant factor that determines overall performance. In
self-describing data processing, in particular, chunk retrieval
and useless memory copy performed by the HDF5 library
become the bottleneck when I/O is faster. RASTER reduces
such overhead through its mesh-building mechanism, which
reduces the number of chunks and improves data continuity
so that chunk retrieval and memory copy can be accelerated.
Effective memory utilization is critical to data pro-

cessing: We found memory amplification when users at-
tempted to process irregular regions of the netCDF dataset.
It is because the unrelated data is read into memory as well.
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With data volume growing, effective memory utilization be-
comes an urgent problem. RASTER optimizes the memory
utilization by only retrieving chunks that are needed.

6 RELATEDWORKS
To the best of our knowledge, this research is the first work
that focuses on optimizing the data layout of self-describing
files with complex regional semantics. Therefore, we only
found a few closely related works in the literature. This
section summarizes commonly used I/O middlewares and
existing optimizations for self-describing files, introduces
popular spatial and temporal data storage systems, and pro-
poses some HPC applications that may benefit from RASTER.

Existing I/Omiddlewares and optimizations:Although
several I/O middlewares and libraries are proposed to en-
hance scientific data processing performance [12, 23, 28, 32,
38], they have limits in optimizing complex regional data ac-
quisitions performance and memory utilization. PLFS [9, 28]
and ADIOS/ADIOS2 [19, 26] provide a lower level optimiza-
tion for scientific data writing but contribute less to data
acquisition performance. ROMIO [33] enables users to per-
form high-performance I/O for non-contiguous requests
but cannot be applied to self-describing scientific datasets
without a lot of code modification. BORA [38] reorganizes
ROS bag files by semantics yet cannot be applied to the
self-describing dataset, either. Topology-aware data move-
ment [34] improves data locality for HDF5 I/O on super-
computers while not considering data semantics and possi-
ble accessing patterns. Existing data re-organization meth-
ods [32, 35] only focus on read-write disorder problems, such
as writing by rows but accessing by columns, but not address
such complex regional data accessing inefficiency. Table. 4
compares I/O approaches for scientific data.
Spatial and temporal databases: Several data manage-

ment systems have been proposed to access spatial or tem-
poral scientific data efficiently. InfluxDB [29] and BtrDB [5]
can manage data in time series efficiently, yet not designed
for scientific array-based datasets. Spatial databases [8, 41]
provide a way to manage spatial-temporal data, but they
only implement SQL-like interfaces, with their data stored
in database formats. As a result, they cannot be applied to
self-describing files or support more complex data access
requests.
Scientific applications with HDF5: Scientific applica-

tions running on HPC systems tend to write and read data via
HDF5/netCDF and their variants. HACC [22] simulates sky
surveys on supercomputing architectures, AMReX [39] runs
adaptive mesh refinement massively in parallel, and both
of them generate datasets in HDF5 or a variant called H5M.
OnDA [27] and Cheetah [7] are designed for high-energy
physics analysis, which requires a high-performance partial

Table 4: I/O Middleware System Comparison

Inter-
position Usage Regional

Access
App.

Modification
PLFS
Plugin

FUSE
Library

Scientific
Data No No

HDF5 Re-
organization Library Scientific

Data No No

Spatial
Database Outside Spatial

Data Partial Heavily

ADIOS/ADIOS2 Library Scientific
Data No Heavily

RASTER Library Scientific
Data Yes Barely No

data acquisition from enormous data in self-describing for-
mats. LAMMPS simulates molecular dynamics and records
atom positions in the HDF5 variant called H5MD. CESM [1]
and WRF [4] are commonly used in climatology, meteorol-
ogy, and oceanography and produce heterogeneous data
with complex region information in netCDF/HDF5 format.
RASTER can assist many of them for better I/O performance
and memory utilization.

7 CONCLUSION
Rapidly growing data volume and the complexity of data ac-
cessing patterns make self-describing scientific data manage-
ment more and more challenging. However, equipping next-
generation I/O devices can not improve the performance
as expected, which is mainly attributed to software over-
head and ineffective use of I/O and memory. To improve
the read performance of complex regions while reducing
software latency, we proposed an I/O optimizing library for
self-describing files, called RASTER. Then, we integrate it
into a server with persistent memories and evaluate its per-
formance on different devices using benchmarks. Further,
we evaluate RASTER in terms of regional data acquisition
time under real-world applications with different scales and
data access patterns. Our experimental results demonstrate
that RASTER can enhance I/O bandwidth and significantly
improve data acquisition performance. Besides, it reduces
software overhead and memory amplification through its
novel design.
As an ongoing project, we plan to extend RASTER with

nestable region mesh builders to support 3-dimensional or
hyper-dimensional region masks. We also plan to integrate
RASTER into more scientific applications with more complex
datasets.
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