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Agenda

* Reliability issues in large-scale training.



The Rapid Scaling of Models and Clusters
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The Grand Breakthrough of Large Models

LLM model sizes scale 8x every two years
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» Model sizes grow 30,000x from 2019 to 2025
» Training scales from 8 to 100k GPUs since 2019
» Parallel strategies are evolving rapidly



Distributed Large Model Training at Scale
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Tensor parallelism (TP): partition individual
layers of a model over multiple devices
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* Data parallelism (DP): shard training dataset
and replicate the model
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potentially other parallelisms

* Pipeline parallelism (PP): partitiona model . ____~— __ e S S R ;
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Credit: Song et al. “Optimus-CC: Efficient Large NLP Model Training with
3D Parallelism Aware Communication Compression,” in ASPLOS 2023 4



At hyperscale, failures
become the norm, rather .
than the exception! . |




Fail-Stop Failures

Complete halt of training due to fatal
software/hardware errors

 OPT-175B: 110 errors in two-month training on
1,000 A100 GPUs

* Llama-3: 419 unexpected failures in 54-day
training on 16,000 H100 GPUs

Extensively studied over the years
* Restart on checkpoints: CheckFreq (FAST’21),
Check-N-Run (NSDI’22), Gemini (SOSP’23)

* Redundant computation & dynamic parallelism
adjustments: Bamboo (NSDI’23), Oobleck
(SOSP’23), Recycle (SOSP’24)

[1] Zhang et al., “Opt: Open pre-trained transformer language models,” in arXiv:2205.01068, 2022.
[2] Grattafiori, Aaron, et al. “The llama 3 herd of models,” in arXiv:2407.21783, 2024.

Category Source Component Root Cause
GPU Processor Faulty GPU
GPU Memory GPU Memory Error
NIC / Switch Network / Connection Error
Infrastructure | Host CPU / Mem. Faulty Host Node
Disk / Filesystem Storage I/O Error
Power Supply Faulty Power Supply
Low-level Libraries MPI / NCCL / CUDA Error
DLT Framework Input / Assertion Error
DLT Framework Model Checkpoint Error
Framework Scheduler Job Preempted
Dataset Libraries Dataloader Error
DLT Framework CPU/GPU Out of Memory
Model Architecture Model Diverged
User Program Launch Script OS / Permission Error
Launch Script Invalid Mem. Access / SegFault
Launch Script Import Error




Fail-Slow Failures (Stragglers)

Components still functioning but slow
* Degraded computation: slow CPUs and GPUs
* Degraded communication: network/link congestion

Sometimes, hardware issues may cause still-functioning but slow stragglers
that are hard to detect. Even a single straggler can slow down thousands of
other GPUs, often appearing as functioning but slow communications.

RV Meta

Despite their prevalence, straggler problems remain not well studied
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 How do stragglers manifest in hybrid-parallel training at scale?



Straggler Characterization: Cluster Setup

Alibaba’s HPAI multi-tenant cluster for training & inference

* 10,000 GPUs: 1,800x H800, 2,600x A100,

* RoCEv2 Network: 4x 400 Gbps NICs for H800, 4x 200 Gbps NICs for A100 node
 Workloads: LLM training (majority), recommendation training, LLM inference

e Scheduler: Customized K8S scheduler
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Credit: Qian et al., “Alibaba HPN: A Data Center Network for Large Language Model Training,” in ACM SIGOMM 2024




Straggler Characterization: Methodology

Cluster sampling
* Repeatedly submit a large number of small probing jobs, which are randomly scheduled
* Probing jobs: specially designed to detect slow computation and/or communication
* Type-A for slow computation: 4x H800 on 1 node, GPT-2 11B, 2TP-2PP, 10K iterations
* Type-B for slow communication: 8x A100 on 4 noes, GPT-2 7B, 2TP-4DP, 10K iterations
e Sampling coverage:
* 400x Type-A jobs covering 500/1,800 H800
* 107x Type-B jobs covering 690/2,600 A100

Manual inspection of training log traces
* Collected log traces of large training jobs in one month, from July 1 to 31, 2024
e 27 Jobs in total, each requiring >=512 GPUs



Straggler Characterization: Overview

Cluster sampling

 Computation stragglers: less
frequent, low impact

 Communication stragglers: frequent,
high impact
Trace inspection for LLM training
* Mean straggler duration: 72 mins
* Avg training slowdown: 34.59%

16/27
% 60 - 1.00 1.00 - ___Egmpn
@ 40 43/107 0.75 1 0.751—{arde
) LL I
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S 201 0.25 - 0.25 - I
S O_:3/392 0.00 1. La':ge'sca'el 0.00 4" I
e 0 50 100 1 10 100
C»O((\QC,O((\((\\?&(g JCT Slowdown (%) Duration (min)
Category Online Probing Off ine I nspection
1-Node | 4-Node | At Scale (=512 GPUs)
No fail-slow 386 64 11
CPU Contention 4 1 0
GPU Degradation 2 0 0
Network Congestion 0 42 13
Multiple | ssues 0 0 3
Total # Jobs 392 107 27
Avg. JCT Slowdown | 11.79% | 15.45% 34.59%
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Straggler Characterization: Overview
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Stragglers are transient, frequent, and can cause significant slowdown!

* Avg training slowdown: 34.59% Category T-Node | 4Node | At Scale (25'12 GPUs)

No fail-slow 386 64 11
CPU Contention 4 1 0
GPU Degradation 2 0 0
Network Congestion 0 42 13
Multiple | ssues 0 0 3
Total # Jobs 392 107 27

Avg. JCT Slowdown | 11.79% | 15.45% 34.59%




Computation Stragglers: CPU Contention

* Multiple collocated jobs
contend for host CPUs

e Occasional occurrence
e ~1%, 4/392 jobs

e Short-lived
* mean duration: ~10 mins

CPU burst of BG jobs - CPU contention
— More time spent on CPU operations
- training slowdown
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Computation Stragglers: GPU Degradation

Straggler GPU
degrad.
* Mainly due to thermal throttling _ S e T—eT
e High temperature, e.g., >70°C 1.6 W E ;’(7)'2' GPUL=—GFUS
: =15 s <77
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14



Communication Stragglers: Congestion

Network congestion
* High NP_CNP_SENT/MARK/HANDLED recorded during fail-slow
* High occurrence frequency: ~40% of 4-node jobs (42/107)
* Long duration: ~24 mins

Straggler Congestion

Intra-node interconnects are stable,
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A case of network congestion
15



Stragglers at Scale: Trace Analysis

* 16/27 (~60%) training jobs experienced stragglers, mean duration ~72 mins

* Measured up to 90% throughput loss in 1024-GPU jobs
e Computation and communication stragglers may occur simultaneously

* Performance across iterations can vary significantly
1024-GPU LLM
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» Stragglers are transient, primarily caused by degradation in
computation (CPU contention & slow GPUs) and communication
(network congestion)

 Computation stragglers are short-lived, less frequent;
communication stragglers are more frequent and last longer
time, causing more significant degradation

* Large-scale training experienced both computation and
communication stragglers, causing significant throughput loss,
potentially exceeding 90%

17



Agenda

 How can stragglers be detected rapidly?



Design Requirements

* Non-intrusive and framework-
transparent

e Rapid and accurate

e Fully automated

* Lightweight, with minimum
performance overhead
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Overview of Greyhound-Detect System
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Technical Challenges

* Challenge #1: How to infer the iteration time without framework’s cooperation?

* Challenge #2: How to detect the onset and termination of a straggler event?

21



Non-Intrusive Iteration Time Inference

Challenge #1: How to infer the iteration time without framework’s cooperation?
* Hook to NCCL calls and intercept Communication Ops via Linux’s LD_PRELOAD
* Training is iterative, w/ periodic Communication Op patterns over iterations
 |dentify periodic Op patterns via time-series analysis and infer the iteration period

Communication Ops: ReduceScatter (RS), AllGather (AG), 2*AllIReduce (AR)

Ilteration time =T5-T1

|teration 2
RS|AG||AR|| AR 4 RS|AG || AR || AR I}S AG | | AR A;R
\ ] / \ ]
Y 1 Y
T1 Period #1 T5 Period #2 Period #3

22



Detecting the Onset of a Slow Iteration

Challenge #2: How to detect the onset and termination of a straggler event?

Bayesian online change-point detection (BOCD) + Verification to filter out false-positives
* A Bayesian method for online change-point detection
* Runlength

0 if changepoint at time ¢ : ST R W P Ml ~ (V|
T't == ....’-... / . iy | . ."g. . .:-.. ..’. N .o.'.....~ ...’E .
rv_1+1 else. » IR U oar g full - VU . .
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The run length posterior at each time step;
darker indicates higher probability

Credit: Adams and MacKay, https://gregorygundersen.com/blog/2019/08/13)Bocd/



Non-Intrusive Straggler Inference
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* How should stragglers be mitigated effectively?



Design Requirements

e Reactive rather than predictive
» Straggler occurrence and
durations are unpredictable

* Online adjustment without
restarting the training job

 Effective for both computation
and communication stragglers




Design Space: the Four Mitigation Strategies

(S1) Do nothing: simply ignore fail-slow problems.

(S2) Adjust micro-batch distribution:
* |dea: assign less #micro-batches to slow DP groups - load balancing across DP groups

(S3) Adjust parallelism topology:
* Key insight: DP is more communication intensive than PP
* |dea: adjust parallelism, use congested links to serve PP traffic, and healthy links for DP traffic

(S4) Checkpoint and Restart: last resort, treat stragglers as failures

Strategy Effectiveness Action
Slow Comp. | Slow Comm. | Overhead
S1: Ignore No Effect No Effect No
S2: Adjust Microbatch Mitigate No Effect Low
S3: Adjust Topology Mitigate Mitigate Medium
S4: Ckpt-N-Restart Eliminate &2|  Eliminate &4 High &2




Design Space: the Four Mitigation Strategies

(S1) Do nothing: simply ignore fail-slow problems.
(S2) Adjust micro-batch distribution:

e ldea’ asgion legs #micrn-hatches to slow DP oroiins = load balancine acrnss DP oroiing

Optimal strategy depends on straggler impacts and duration, which cannot
be known in prior

* 1aed: dajust paralierism, use congested I1nkKsSs To Serve PP rdrtic, dna nearny 1nks 1or vr trarric

(S4) Checkpoint and Restart: last resort, treat stragglers as failures

Strategy Effectiveness Action
Slow Comp. | Slow Comm. | Overhead
S1: Ignore No Effect No Effect No
S2: Adjust Microbatch Mitigate No Effect Low
S3: Adjust Topology Mitigate Mitigate Medium
S4: Ckpt-N-Restart Eliminate Eliminate High




The Ski Rental Problem

A skier goes to a ski resort with two choices: (1) renting skis for S1 per day or (2)

buying skis for SB. The skier has no idea how many days to ski and needs to decide
at the beginning of each day whether to rent or buy skis.

e Optimal strategy: Rent until realizing you should have bought, then buy
* Rent on the first B-1 days, and then buy skis on the B-th day
* The cost is £2x of the ideal optimum, the best possible for a deterministic online algorithm

Cost , o
2B-1

T

B-1 B Day
29



Multi-Level
Straggler
Mitigation

Starts with a low-cost
strategy (S1) and
progressively switches
to more effective, yet
more costly ones

Cost |

Switch

Observe

Strate Effectiveness Action
gy Slow Comp. | Slow Comm. | Overhead
S1: Ignore No Effect No Effect No
S2: Adjust Microbatch Mitigate No Effect Low
S3: Adjust Topology Mitigate Mitigate Medium
S4: Ckpt-N-Restart Eliminate B2|  Eliminate &2 High &
Observe
\ T
Switch to S4
Observe
Switch to S3
to S2

N\,

| s1

T1 12 T3

Time
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* How do our detection and mitigation solutions perform?



Methodology

* Testbed
* NVIDIA H800 SuperPOD, 400 Gbps IB
* Upto 256 H800 GPUs in 8 DGX servers
* Framework: Megatron-LM
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 Straggler injection
» Slow computation: throttle GPU frequency
with nvidia-smi

e Slow communication: launch
communication-intensive jobs to create

network congestion
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How Accurate Is Detection?

Probing jobs: specially designed to detect slow computation and/or communication
* Type-A for slow comput.: 4x H800 on 1 node, GPT-2 11B, 2TP-2PP, 10K iterations
* Type-B for slow commun.: 8x A100 on 4 noes, GPT-2 7B, 2TP-4DP, 10K iterations

Manually verified the probing results via trace inspection

Algorithm Accuracy? (%) FPR| (%) FNR| (%)
Type-A for slow com putation SlideWindow 99.5(390/392) 0.0(0/386) 25.0(2/8)
(single node) BOCD 77.8(305/392) | 18.39(87/473) |  0.0(0/6)
BOCD+V 100.0(392/392) 0.0(0/386) 0.0(0/6)
Algorithm Accuracyt (%) FPR| (%) FNR| (%)
Type-B for slow communication SlideWindow 93.5(100/107) 1.5(1/65) 12.2(6/49)
(4-node) BOCD 69.2(74/107) 34.0(33/97) 0.00(0/43)
BOCD+V 99.1(106/107) 0.00(0/64) 2.3(1/44)

Overhead: ~0.39% across all jobs, barely negligible



How Effective Is Mitigation?

Mitigating comput. stragglers (S2)
* Inject slow computations into 0-4 DP
groups in a 4-DP training job
* Overhead: <30s even #DP=512.

Mitigating commun. stragglers (S3)

* Inject weak, medium and strong
communication stragglers into 16-GPU
training jobs w/ 4 and 8 PP stages

* Overhead: <50s in our cluster, 6.72x
faster than ckpt-n-restart.

Slow commun. + slow comput.
e 16-GPU training w/ (4DP, 4PP)
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How Does Greyhound Perform at Scale?

* Training GPT2-40B on 256 GPUs using (8TP, 16DP, 2PP)

* Inject 2 communication stragglers and 8 computation stragglers of varying severity

Total: 10.56s y

Identify stragglers in 10s

End-to-end performance:
1.58x faster

Comm. Slow | Comp. Slow | Detect Acc. Avg, Reaction
Weak: 3 BOCD: 3.7s
Medium: 2 Medium: 5 100% Prof.&Val.: 6.86s
Severe: 2
40 'I
c "ln*i
5 E 301
N
=220 =
~ —Mltlgated Origlnal \‘
HC_1.0 i ‘Ii._.! o i i i.;: L ;:.__:LI |
& 0.5 {——Communication --- Computation
0 500 1000 1500 2000 2500 3000

Training Time (s)
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Conclusion

* First comprehensive characterization study of straggler problems for LM training

» Stragglers are transient, frequent, and can result in significant training slowdown

* Computation stragglers are short-lived, less frequent, communication stragglers are more
frequent and last longer time, causing more significant degradation

» Straggler detection
* Non-intrusive, rapid, accurate, and lightweight

 Effective multi-level straggler mitigation

* Four possible mitigation strategies
« Start w/ a low-cost one and progressively switches to more effective, yet more costly ones
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