

Greyhound: Hunting Fail-Slows in Hybrid-Parallel Training at Scale

Tianyuan Wu[†], Wei Wang[†], Yinghao Yu[§], Siran Yang[§], Wenchao Wu[§], Qinkai Duan[†], Guodong Yang[§], Jiamang Wang[§], Lin Qu[§], Liping Zhang[§]
†Hong Kong University of Science and Technology §Alibaba Group

Agenda

- Reliability issues in large-scale training.
- How do stragglers manifest in hybrid-parallel training at scale?
- How can stragglers be detected rapidly?
- How should stragglers be mitigated effectively?
- How do our detection and mitigation solutions perform?

The Rapid Scaling of Models and Clusters

Al-powered forecasting Huawei PanGu LLM **200B**

Al for mathematics GPT-4 **1000B?**

Baidu's AI-assisted mRNA design optimization featured in Nature HelixFold, ERNIE **260B**

The Grand Breakthrough of Large Models

LLM model sizes scale 8x every two years

- ► Model sizes grow 30,000x from 2019 to 2025
- Training scales from 8 to 100k GPUs since 2019
- Parallel strategies are evolving rapidly

Distributed Large Model Training at Scale

- Tensor parallelism (TP): partition individual layers of a model over multiple devices
- Data parallelism (DP): shard training dataset and replicate the model
- Pipeline parallelism (PP): partition a model into layer groups, each being a pipeline stage
- Other specialized parallelism
 - Context parallelism (CP), expert parallelism (EP)
- Hybrid parallelism: combine DP, PP, TP, and potentially other parallelisms

Fail-Stop Failures

Complete halt of training due to fatal software/hardware errors

- OPT-175B: 110 errors in two-month training on 1,000 A100 GPUs [1]
- Llama-3: 419 unexpected failures in 54-day training on 16,000 H100 GPUs [2]

Extensively studied over the years

- Restart on checkpoints: CheckFreq (FAST'21), Check-N-Run (NSDI'22), Gemini (SOSP'23)
- Redundant computation & dynamic parallelism adjustments: Bamboo (NSDI'23), Oobleck (SOSP'23), Recycle (SOSP'24)

Category	Source Component	Root Cause	
	GPU Processor	Faulty GPU	
	GPU Memory	GPU Memory Error	
	NIC / Switch	Network / Connection Error	
Infrastructure	Host CPU / Mem.	Faulty Host Node	
	Disk / Filesystem	Storage I/O Error	
	Power Supply	Faulty Power Supply	
	Low-level Libraries	MPI / NCCL / CUDA Error	
	DLT Framework	Input / Assertion Error	
	DLT Framework	Model Checkpoint Error	
Framework	Scheduler	Job Preempted	
	Dataset Libraries	Dataloader Error	
	DLT Framework	CPU/GPU Out of Memory	
	Model Architecture	Model Diverged	
I I D	Launch Script	OS / Permission Error	
User Program	Launch Script	Invalid Mem. Access / SegFault	
	Launch Script	Import Error	

^[2] Grattafiori, Aaron, et al. "The llama 3 herd of models," in arXiv:2407.21783, 2024.

Fail-Slow Failures (Stragglers)

Components still functioning but slow

- Degraded computation: slow CPUs and GPUs
- Degraded communication: network/link congestion
- Sometimes, hardware issues may cause *still-functioning but slow stragglers* that are *hard to detect*. *Even a single straggler can slow down thousands of other GPUs*, often appearing as functioning but slow communications. ⁵⁵

Meta

Despite their prevalence, straggler problems remain not well studied

Agenda

- Reliability issues in large-scale training.
- How do stragglers manifest in hybrid-parallel training at scale?
- How can stragglers be detected rapidly?
- How should stragglers be mitigated effectively?
- How do our detection and mitigation solutions perform?

Straggler Characterization: Cluster Setup

Alibaba's HPAI multi-tenant cluster for training & inference

- **10,000** GPUs: 1,800x H800, 2,600x A100, 5000+ Other GPUs
- RoCEv2 Network: 4x 400 Gbps NICs for H800, 4x 200 Gbps NICs for A100 node
- Workloads: LLM training (majority), recommendation training, LLM inference
- Scheduler: Customized K8S scheduler

Straggler Characterization: Methodology

Cluster sampling

- Repeatedly submit a large number of small probing jobs, which are randomly scheduled
- **Probing jobs:** specially designed to detect slow computation and/or communication
 - Type-A for slow computation: 4x H800 on 1 node, GPT-2 11B, 2TP-2PP, 10K iterations
 - Type-B for slow communication: 8x A100 on 4 noes, GPT-2 7B, 2TP-4DP, 10K iterations
- Sampling coverage:
 - 400x Type-A jobs covering **500/1,800** H800
 - 107x Type-B jobs covering **690/2,600** A100

Manual inspection of training log traces

- Collected log traces of large training jobs in one month, from July 1 to 31, 2024
- 27 Jobs in total, each requiring >=512 GPUs

Straggler Characterization: Overview

Cluster sampling

- Computation stragglers: less frequent, low impact
- Communication stragglers: frequent, high impact

Trace inspection for LLM training

- Mean straggler duration: 72 mins
- Avg training slowdown: **34.59**%

Category	Online Probing		Offine Inspection	
Category	1-Node	4-Node	At Scale (≥512 GPUs)	
No fail-slow	386	64	11	
CPU Contention	4	1	0	
GPU Degradation	2	0	0	
Network Congestion	0	42	13	
Multiple Issues	0	0	3	
Total # Jobs	392	107	27	
Avg. JCT Slowdown	11.79%	15.45%	34.59%	

Straggler Characterization: Overview

Cluster sampling

- Computation stragglers: less frequent, low impact
- Communication stragglers: frequent,

Stragglers are transient, frequent, and can cause significant slowdown!

Avg training slowdown: 34.59%

			<u> </u>
Category	1-Node	4-Node	At Scale (≥512 GPUs)
No fail-slow	386	64	11
CPU Contention	4	1	0
GPU Degradation	2	0	0
Network Congestion	0	42	13
Multiple Issues	0	0	3
Total # Jobs	392	107	27
Avg. JCT Slowdown	11.79%	15.45%	34.59%

Computation Stragglers: CPU Contention

- Multiple collocated jobs contend for host CPUs
- Occasional occurrence
 - ~1%, 4/392 jobs
- Short-lived
 - mean duration: ~10 mins

CPU burst of BG jobs → CPU contention
 → More time spent on CPU operations
 → training slowdown

Computation Stragglers: GPU Degradation

- Mainly due to thermal throttling
 - High temperature, e.g., >70°C
- Occasional occurrence
 - ~0.5%, 2/392 jobs
- Short-lived
 - ~10 mins mean duration

GPU0 measured high temperature, resulting in thermal throttling

A case of GPU degradation

Communication Stragglers: Congestion

Network congestion

- High NP_CNP_SENT/MARK/HANDLED recorded during fail-slow
- High occurrence frequency: ~40% of 4-node jobs (42/107)
- Long duration: ~24 mins

Intra-node interconnects are stable, Inter-node RDMA has large variance

Comm. Type	Intra-Node		Inter-Node	
7,60	NVL	PIX	RDMA	
CoV	0.02	0.09	0.29	

A case of network congestion

Stragglers at Scale: Trace Analysis

- 16/27 (~60%) training jobs experienced stragglers, mean duration ~72 mins
 - Measured up to 90% throughput loss in 1024-GPU jobs
 - Computation and communication stragglers may occur simultaneously
 - Performance across iterations can vary significantly

Three Takeaways

- Stragglers are *transient*, primarily caused by degradation in computation (CPU contention & slow GPUs) and communication (network congestion)
- Computation stragglers are short-lived, less frequent; communication stragglers are more frequent and last longer time, causing more significant degradation
- Large-scale training experienced both computation and communication stragglers, causing significant throughput loss, potentially exceeding 90%

Agenda

- Reliability issues in large-scale training.
- How do stragglers manifest in hybrid-parallel training at scale?
- How can stragglers be detected rapidly?
- How should stragglers be mitigated effectively?
- How do our detection and mitigation solutions perform?

Design Requirements

- Non-intrusive and frameworktransparent
- Rapid and accurate
- Fully automated
- Lightweight, with minimum performance overhead

Overview of Greyhound-Detect System

Technical Challenges

- Challenge #1: How to infer the iteration time without framework's cooperation?
- Challenge #2: How to detect the onset and termination of a straggler event?
- Challenge #3: How to profile the slow GPU or communication group? [In Paper]
- Challenge #4: How to locate the congested link within a group? [In Paper]

Non-Intrusive Iteration Time Inference

Challenge #1: How to infer the iteration time without framework's cooperation?

- Hook to NCCL calls and intercept Communication Ops via Linux's LD_PRELOAD
- Training is iterative, w/ periodic Communication Op patterns over iterations
- Identify periodic Op patterns via time-series analysis and infer the iteration period

Communication Ops: ReduceScatter (RS), AllGather (AG), 2*AllReduce (AR)

Iteration time = T5 - T1

Detecting the Onset of a Slow Iteration

Challenge #2: How to detect the onset and termination of a straggler event?

Bayesian online change-point detection (BOCD) + Verification to filter out false-positives

- A Bayesian method for online change-point detection
- Run length

$$r_t = egin{cases} 0 & ext{if changepoint at time } t \ r_{t-1} + 1 & ext{else.} \end{cases}$$

Updating

$$p(r_t, \mathbf{x}_{1:t}) = \sum_{r_{t-1}} \overbrace{p(x_t \mid r_t, \mathbf{x}^{(\ell)})}^{ ext{UPM predictive Changepoint prior Message}} p(r_t, \mathbf{x}_{1:t-1}).$$

The run length posterior at each time step; darker indicates higher probability

Non-Intrusive Straggler Inference

Agenda

- Reliability issues in large-scale training.
- How do stragglers manifest in hybrid-parallel training at scale?
- How can stragglers be detected rapidly?
- How should stragglers be mitigated effectively?
- How do our detection and mitigation solutions perform?

Design Requirements

- Reactive rather than predictive
 - Straggler occurrence and durations are unpredictable
- Online adjustment without restarting the training job
- Effective for both computation and communication stragglers

Design Space: the Four Mitigation Strategies

(S1) Do nothing: simply ignore fail-slow problems.

(S2) Adjust micro-batch distribution:

Idea: assign less #micro-batches to slow DP groups → load balancing across DP groups

(S3) Adjust parallelism topology:

- Key insight: DP is more communication intensive than PP
- Idea: adjust parallelism, use congested links to serve PP traffic, and healthy links for DP traffic

(S4) Checkpoint and Restart: last resort, treat stragglers as failures

Strategy	Effect	Action	
Strategy	Slow Comp.	Slow Comm.	Overhead
S1: Ignore	No Effect	No Effect	No
S2: Adjust Microbatch	Mitigate	No Effect	Low
S3: Adjust Topology	Mitigate	Mitigate	Medium
S4: Ckpt-N-Restart	Eliminate	Eliminate	High

Design Space: the Four Mitigation Strategies

- (S1) Do nothing: simply ignore fail-slow problems.
- (S2) Adjust micro-batch distribution:
 - Idea: assign less #micro-hatches to slow DP groups → load halancing across DP groups

Optimal strategy depends on straggler impacts and duration, which cannot be known in prior

• Idea: adjust parallelism, use congested links to serve PP traffic, and nealthy links for DP traffic

(S4) Checkpoint and Restart: last resort, treat stragglers as failures

Strategy	Effect	Action	
Strategy	Slow Comp.	Slow Comm.	Overhead
S1: Ignore	No Effect	No Effect	No
S2: Adjust Microbatch	Mitigate	No Effect	Low
S3: Adjust Topology	Mitigate	Mitigate	Medium
S4: Ckpt-N-Restart	Eliminate	Eliminate	High

The Ski Rental Problem

A skier goes to a ski resort with two choices: (1) **renting skis** for \$1 per day or (2) **buying skis** for \$B. The skier *has no idea how many days to ski* and needs to decide at the beginning of each day **whether to rent or buy skis**.

- Optimal strategy: Rent until realizing you should have bought, then buy
 - Rent on the first B-1 days, and then buy skis on the B-th day
 - The cost is ≤2x of the ideal optimum, the best possible for a deterministic online algorithm

Multi-Level Straggler Mitigation

Starts with a low-cost strategy (S1) and **progressively switches** to more effective, yet more costly ones

Strategy	Effect	Action	
Strategy	Slow Comp.	Slow Comm.	Overhead
S1: Ignore	No Effect	No Effect	No
S2: Adjust Microbatch	Mitigate	No Effect	Low
S3: Adjust Topology	Mitigate	Mitigate	Medium
S4: Ckpt-N-Restart	Eliminate	Eliminate	High

Agenda

- Reliability issues in large-scale training.
- How do stragglers manifest in hybrid-parallel training at scale?
- How can stragglers be detected rapidly?
- How should stragglers be mitigated effectively?
- How do our detection and mitigation solutions perform?

Methodology

Testbed

- NVIDIA H800 SuperPOD, 400 Gbps IB
- Up to 256 H800 GPUs in 8 DGX servers
- Framework: Megatron-LM

Straggler injection

- Slow computation: throttle GPU frequency with nvidia-smi
- Slow communication: launch communication-intensive jobs to create network congestion

How Accurate Is Detection?

Probing jobs: specially designed to detect slow computation and/or communication

- Type-A for slow comput.: 4x H800 on 1 node, GPT-2 11B, 2TP-2PP, 10K iterations
- Type-B for slow commun.: 8x A100 on 4 noes, GPT-2 7B, 2TP-4DP, 10K iterations

Manually verified the probing results via trace inspection

Type-A for slow computation (single node)

Algorithm	Accuracy ↑ (%)	FPR ↓ (%)	FNR ↓ (%)
SlideWindow	99.5(390/392)	0.0(0/386)	25.0(2/8)
BOCD	77.8(305/392)	18.39(87/473)	0.0(0/6)
BOCD+V	100.0(392/392)	0.0(0/386)	0.0(0/6)

Type-B for slow communication (4-node)

Algorithm	Accuracy ↑ (%)	FPR ↓ (%)	FNR ↓ (%)
SlideWindow	93.5(100/107)	1.5(1/65)	12.2(6/49)
BOCD	69.2(74/107)	34.0(33/97)	0.00(0/43)
BOCD+V	99.1(106/107)	0.00(0/64)	2.3(1/44)

Overhead: ~0.39% across all jobs, barely negligible

How Effective Is Mitigation?

Mitigating comput. stragglers (S2)

- Inject slow computations into 0-4 DP groups in a 4-DP training job
- Overhead: <30s even #DP=512.

Mitigating commun. stragglers (S3)

- Inject weak, medium and strong communication stragglers into 16-GPU training jobs w/ 4 and 8 PP stages
- Overhead: <50s in our cluster, 6.72x faster than ckpt-n-restart.

Slow commun. + slow comput.

16-GPU training w/ (4DP, 4PP)

How Does Greyhound Perform at Scale?

- Training GPT2-40B on 256 GPUs using (8TP, 16DP, 2PP)
 - Inject 2 communication stragglers and 8 computation stragglers of varying severity

Conclusion

- First comprehensive characterization study of straggler problems for LM training
 - Stragglers are transient, frequent, and can result in significant training slowdown
 - Computation stragglers are short-lived, less frequent; communication stragglers are more frequent and last longer time, causing more significant degradation
- Straggler detection
 - Non-intrusive, rapid, accurate, and lightweight
- Effective multi-level straggler mitigation
 - Four possible mitigation strategies
 - Start w/ a low-cost one and progressively switches to more effective, yet more costly ones

