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Agenda

• Reliability issues in large-scale training.

• How do stragglers manifest in hybrid-parallel training at scale?

• How can stragglers be detected rapidly?

• How should stragglers be mitigated effectively?

• How do our detection and mitigation solutions perform?
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The Rapid Scaling of Models and Clusters

The Grand Breakthrough of Large Models

AI-powered forecasting
Huawei PanGu LLM 200B

AI for mathematics
GPT-4 1000B?

Baidu’s AI-assisted mRNA design 
optimization featured in Nature

HelixFold, ERNIE 260B

LLM model sizes scale 8x every two years

► Model sizes grow 30,000x from 2019 to 2025

► Training scales from 8 to 100k GPUs since 2019

► Parallel strategies are evolving rapidly
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Distributed Large Model Training at Scale

• Tensor parallelism (TP): partition individual 
layers of a model over multiple devices

• Data parallelism (DP): shard training dataset 
and replicate the model

• Pipeline parallelism (PP): partition a model 
into layer groups, each being a pipeline stage

• Other specialized parallelism
• Context parallelism (CP), expert parallelism (EP)

• Hybrid parallelism: combine DP, PP, TP, and 
potentially other parallelisms

Credit: Song et al. “Optimus-CC: Efficient Large NLP Model Training with 
3D Parallelism Aware Communication Compression,” in ASPLOS 2023 4



At hyperscale, failures 
become the norm, rather 
than the exception!
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Fail-Stop Failures

Complete halt of training due to fatal 
software/hardware errors

• OPT-175B: 110 errors in two-month training on 
1,000 A100 GPUs [1]

• Llama-3: 419 unexpected failures in 54-day 
training on 16,000 H100 GPUs [2]

Extensively studied over the years
• Restart on checkpoints: CheckFreq (FAST’21), 

Check-N-Run (NSDI’22), Gemini (SOSP’23)

• Redundant computation & dynamic parallelism 
adjustments: Bamboo (NSDI’23), Oobleck 
(SOSP’23), Recycle (SOSP’24) 

[1] Zhang et al., “Opt: Open pre-trained transformer language models,” in arXiv:2205.01068, 2022.
[2] Grattafiori, Aaron, et al. “The llama 3 herd of models,” in arXiv:2407.21783, 2024.
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Fail-Slow Failures (Stragglers)

Components still functioning but slow
• Degraded computation: slow CPUs and GPUs

• Degraded communication: network/link congestion
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Sometimes, hardware issues may cause still-functioning but slow stragglers 
that are hard to detect. Even a single straggler can slow down thousands of 
other GPUs, often appearing as functioning but slow communications.

“
”

The Llama 3 Herd of Models
Llama Team, AI @ Met a1

1A detailed contributor list can be found in the appendix of this paper.

Modern art ificial intelligence (AI) systems are powered by foundat ion models. This paper presents a

new set of foundat ion models, called Llama 3. It is a herd of language models that nat ively support

mult ilingualit y, coding, reasoning, and tool usage. Our largest model is a dense Transformer with

405B parameters and a context window of up to 128K tokens. This paper presents an extensive

empirical evaluat ion of Llama 3. We find that Llama 3 delivers comparable quality to leading language

models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-t rained and

post-t rained versions of the 405B parameter language model and our Llama Guard 3 model for input

and output safety. The paper also presents the results of experiments in which we integrate image,

video, and speech capabilit ies into Llama 3 via a composit ional approach. We observe this approach

performs compet it ively with the state-of-the-art on image, video, and speech recognit ion tasks. The

result ing models are not yet being broadly released as they are st ill under development .

Dat e: July 23, 2024

Websit e: ht tps:/ / llama.meta.com/

1 Int roduct ion

Foundat ion models are general models of language, vision, speech, and/ or other modalit ies that are designed

to support a large variety of AI tasks. They form the basis of many modern AI systems.

The development of modern foundat ion models consists of two main stages: (1) a pre-t raining stage in which

the model is t rained at massive scale using straight forward tasks such as next-word predict ion or capt ioning

and (2) a post-t raining stage in which the model is tuned to follow instruct ions, align with human preferences,

and improve specific capabilit ies (for example, coding and reasoning).

In this paper, we present a new set of foundat ion models for language, called Llama 3. The Llama 3 Herd

of models nat ively supports mult ilingualit y, coding, reasoning, and tool usage. Our largest model is dense

Transformer with 405B parameters, processing informat ion in a context window of up to 128K tokens. Each

member of the herd is listed in Table 1. All the results presented in this paper are for the Llama 3.1 models,

which we will refer to as Llama 3 throughout for brevity.

We believe there are three key levers in the development of high-quality foundat ion models: data, scale, and

managing complexity. We seek to opt imize for these three levers in our development process:

• Dat a. Compared to prior versions of Llama (Touvron et al., 2023a,b), we improved both the quant ity and

quality of thedata weuse for pre-t raining and post-t raining. These improvements include thedevelopment

of more careful pre-processing and curat ion pipelines for pre-t raining data and the development of more

rigorous quality assurance and filtering approaches for post-t raining data. We pre-t rain Llama 3 on a

corpus of about 15T mult ilingual tokens, compared to 1.8T tokens for Llama 2.

• Scale. We train a model at far larger scale than previous Llama models: our flagship language model was

pre-t rained using 3.8× 1025 FLOPs, almost 50× more than the largest version of Llama 2. Specifically,

we pre-t rained a flagship model with 405B trainable parameters on 15.6T text tokens. As expected per

1

Despite their prevalence, straggler problems remain not well studied
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• How do stragglers manifest in hybrid-parallel training at scale?
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• How should stragglers be mitigated effectively?

• How do our detection and mitigation solutions perform?

8



Straggler Characterization: Cluster Setup

Alibaba’s HPAI multi-tenant cluster for training & inference
• 10,000 GPUs: 1,800x H800, 2,600x A100, 5000+ Other GPUs

• RoCEv2 Network: 4x 400 Gbps NICs for H800, 4x 200 Gbps NICs for A100 node

• Workloads: LLM training (majority), recommendation training, LLM inference

• Scheduler: Customized K8S scheduler
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Alibaba HPN: A Data Center Network for Large Language Model Training ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
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Figure 9: Power consumption of 51.2Tbps single-chip swi tch

and the ef ciency of di f erent cool ing solutions.
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Figure 10: Customized 51.2Tbps single-chip swi tch. In (b) and

(c), wicked pi l lar works for cool ing and cooper pi l lar works

for load-bearing.

quick replacement of hostsunder host-side failures (including CPU,

Memory, GPU, PCIe, NVLINK and NIC).

Why single-chip swi tch? The bandwidth capacity of the ToR

switch directly determines the number of GPUs in the same tier1

network. There have been multi-chip chassis switchessupporting

higher bandwidth capacity [9, 27, 28, 32, 50]. However, Alibaba

Cloud’s long-term experience in operating data center networks

reveals that multi-chip chassis switches introduce more stability

risks than single-chip switches. Specif cally, our operational single-

chip switches outnumber multi-chip switches by 32.6×. On the

contrary, the total number of critical hardware failures in multi-

chip switches is 3.77×higher than in single-chip switches. The

root cause is that the multi-chip switch is a distributed switching

system, with multiple chips interconnecting through a chip fabric.

Failures in the internal fabric, inter-chip interactions, and chip-to-

CPU communication all contribute to the overall critical outages.

We, therefore, decide to take single-chip switches for all newly

designed network architectures.

Chal lengesintroduced by high-throughput single-chip switch.

A single chip supporting higher throughput means more traf c is

handled per unit area, leading to increased power consumption

in practice. As shown in Figure 9a, the power consumption of the

51.2Tbps switching chip has increased by 45%compared to the

previous generation 25.6Tbps chip.2 However, the chip’s max junc-

tion temperature (� jmax) remains unchanged (105°C). If the chip’s

working temperature exceeds� jmax, it will immediately trigger the

over-temperature protection, shutting down all data transmission.

2Data from chip vendor B, we omit the name due to conf dentiality.
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As shown in Figure 9b, none of the existing cooling solutions,

including basic heat pipe solutions [34, 51] and the recommended

vapor chamber (VC) heat sink [35, 36] provided by switch vendors,

could support the51.2Tbpssingle-chip work at full power (seeHeat

Pipe and Original VC in Figure 9b). In our experiments, we gener-

ated various high-pressure scenarios that could happen online, and

theabovesolutionsencountered shutdowns triggered by exceeding

� jmax. Leaving this cooling issue unsolved would lead to server

outages in large-scale deployments.

Through comprehensiveinvestigation,wef nd out theroot cause:

the heat generated at the center of the chip could not be ef ectively

carried out. Asshown in Figure10, wedesign anew VC heat sink to

resolve this issue. By optimizing the wick structure and deploying

more wicked pillars at the center of the chip, heat could be carried

out more ef ciently. This design increases the cooling ef ciency

by 15%(see Optimized VC in Figure 9b). We deeply cooperate with

our switch vendors to customize switches to equip this optimized

VC, ensuring no overheating in all pressure cases.

5.2 Rai l -Optimized Network

Thede-facto conf guration is that 8 GPUs inside the host are con-

nected with a high bandwidth intra-host network (e.g., NVLINK).

Although the intra-host network bandwidth varies under dif erent

types of GPUs, it is 4-9×greater than the 2×200Gbps bandwidth

provided by a NIC. To fully leverage the dif erent forwarding ca-

pabilities, NVIDIA is the f rst to propose the concept of the rail-

optimized network [21], which hasbeen widely adopted in training

clusters. In a rail-optimized network, NICs in the same rail are con-

nected through thesameset of dual-ToRswitches. NICs in dif erent

rails can communicate via a combination of intra-host + inter-host

forwarding. For example, in Figure 11, if GPU1 in host1 wants to

talk to GPU2 in host 3, the forwarding path is GPU1 in host1→
GPU2 in host1→ ToR3→ GPU2 in host3.

Figure 11 shows how we employ the rail-optimized network in

practice, which allows the 3.2Tbps (8×400Gbps) of a single host

to be served across up to 16 ToR switches (under dual-ToR). The

number of GPUs a segment can contain is increased by 8×, com-

pared to the original topology, where 3.2Tbps for a host is served

by 2 ToR switches. Each set of dual-ToR switches can serve 128

GPUs, and the 16 ToRs collectively connect 1024 GPUs in a seg-

ment, substantially reducing the forwarding latency and providing

the utmost performance. More importantly, it signif cantly reduces

traf c crossing the Aggregation layer, lowering the possibility of

load imbalance in the network.

697

Credit: Qian et al., “Alibaba HPN: A Data Center Network for Large Language Model Training,” in ACM SIGOMM 2024



Straggler Characterization: Methodology

Cluster sampling
• Repeatedly submit a large number of small probing jobs, which are randomly scheduled

• Probing jobs: specially designed to detect slow computation and/or communication

• Type-A for slow computation: 4x H800 on 1 node, GPT-2 11B, 2TP-2PP, 10K iterations

• Type-B for slow communication: 8x A100 on 4 noes, GPT-2 7B, 2TP-4DP, 10K iterations

• Sampling coverage:

• 400x Type-A jobs covering 500/1,800 H800

• 107x Type-B jobs covering 690/2,600 A100

Manual inspection of training log traces
• Collected log traces of large training jobs in one month, from July 1 to 31, 2024

• 27 Jobs in total, each requiring >=512 GPUs 
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Straggler Characterization: Overview

Cluster sampling
• Computation stragglers: less 

frequent, low impact

• Communication stragglers: frequent, 
high impact

Trace inspection for LLM training
• Mean straggler duration: 72 mins 

• Avg training slowdown: 34.59%

11

Category
OnlineProbing Off ine Inspection

1-Node 4-Node At Scale (≥512GPUs)
No fail-slow 386 64 11

CPU Contention 4 1 0

GPU Degradation 2 0 0

Network Congestion 0 42 13

Multiple Issues 0 0 3

Total # Jobs 392 107 27

Avg. JCT Slowdown 11.79% 15.45% 34.59%

Table1: Root causesand JCT slowdown of fail-slow issues

in our characterization study.

3.2 How Computation Fail-SlowsManifest?

Sampling jobs. We start to characterize computation fail-

slowsoccurred on individual nodes. Wesubmitted 400 single-

node training jobs to our cluster, of which 392 successfully

completed without fail-stop errors. Each job trained aGPT2-

11B model on onenodeusing 4 H800 GPUswith a hybrid

parallelism strategy of (2TP, 1DP, 2PP) to fully utilizeGPU

memory. Thetraining framework used isMegatron-LM. Each

job ran 10,000 iterations, taking 70 to 90 minutes. These

sampling jobswerescheduled to run on approximately 500

out of 1,800 H800GPUs in our cluster.

Frequency and impacts. Assummarized in Table1, six out

of 392 sampling jobsexperienced computation fail-slows. Of

these, four jobswere slowed down due to CPU contention,

and two due toGPU performancedegradation. On average,

these computation fail-slows persist for about 10 minutes,

extending thejobcompletion time(JCT) by 11.79%. Tobetter

understand the root causesof these issues, wenext provide

two casestudies.

Case-1: CPU contention. Asshown in Figure2 (upper-left),

the job under study experienced two fail-slowsat 22 and 55

minutes, resulting in amaximum performancedrop of 21.6%.

Correspondingly, the jobmeasured simultaneousdeclines in

SM utilization acrossall four GPUsduring fail-slow periods

(upper-right), suggesting GPU slowdown. To validate this,

we paused the job and conducted a matrix computation to

assessGPU performanceupon fail-slow detection, but found

no performancedegradation. Further investigation revealed

asurge in thenumber of high-CPU jobscoinciding with the

fail-slow occurrence (bottom-left), leading to a decreased

CPU satisfaction rate (bottom-right), increased CPU time,

and ultimately, a reduction in throughput.

Case-2: GPU performancedegradation. Computation fail-

slowscan also beattributed toGPU performancedegradation,

often linked to frequency reduction due to thermal throttling.

Figure3 illustratesacasewhere the job under study experi-

enced slowdown in the f rst 10 minutes (upper-left), result-

ing in under-utilization of all four GPUs (upper-right). Our

prof ling indicated that GPU0 was 20% slower than others

(bottom-left) and recorded an unusually high temperatureof

nearly 70◦C. Notably, rising temperaturesdo not always lead

Figure 2: A case of a fail-slow job due to CPU contention.

Upper-left: Training throughput. Upper-r ight: GPU SM

utilization of the four GPUs used by this job. Bottom-left:

The number of high-CPU jobs running on the same node.

Bottom-r ight: CPU satisfaction rateof the training job (red)

and other colocated jobs (blue).

Figure 3: A case of a fail-slow job due to GPU perfor-

mancedegradation. Upper-left: Throughput of the training

job. Upper-r ight: GPU SM utilization of the four GPUsused.

Bottom-left: Normalized GPU performanceduring fail-slow.

Bottom-r ight: Reported GPU temperature.

to performance issues; this may indicate a hardware prob-

lem, with an occurrence rateof about 0.5%, consistent with

ByteDance’s report [18].

3.3 How Communication Fail-SlowsManifest?

Sampling jobs. To explore communication fail-slows, we

submitted 120 four-node training jobs, of which 107 success-

fully completed without fail-stop. Each job utilized 8 A100

GPUs across 4 nodes to train a GPT2-7B model. The par-

allelism strategy employed was (2TP, 4DP, 1PP), whereTP

communicationsoccurred intra-nodeviaNVSwitch, and DP

communicationswere inter-node through a400GbpsRoCE

link. Each job executed 10,000 iterations, taking approxi-

mately 5 hours. These jobsweredistributed among about 690

out of 2,600 A100GPUs in our cluster.

Frequency and impacts. Asdetailed inTable1, 43out of 107

jobsexperienced fail-slows. Among them,onejobwasslowed

due to CPU contention, while the remaining 42 encountered

network congestion. Theaverageduration of theseslowdowns

4

Figure1: Left: Occurrencerateof fail-slowson computation

and communication at node or link level and in large-scale

training. Center : Impact of fail-slowson job completion time

(JCT). Right: CDF of fail-slow duration.

minutes. These fail-slowsdelay the job completion timeby

an averageof 1.34×. Figure1 depicts themain resultsof our
characterization study.

Compared to fail-stops, fail-slow failuresaremoreelusive

to detect and locate [8,18], especially when advanced hybrid

parallelism techniquesareemployed [29,42], which combine

tensor, data, pipeline, and possibly context and expert paral-

lelism toexpeditethetrainingprocess[9,22]. Current practice

reliesmostly onmanual inspection, which is time-consuming

and labor-intensive. Although state-of-the-art validation tools

and benchmarks exist [49,55], using them to locate the de-

graded component requiresstopping and restarting theentire

training job, which isprohibitively expensive. Furthermore,

the availability of multiple training frameworks [3,29] and

therapid evolution of model architectures[8,22,34,40] neces-

sitate that thedetectionmechanismbeboth framework- and

model-agnostic. Additionally, pinpointing theonset of a fail-

slow event and differentiating it from occasional performance

f uctuationsadd to thechallenges.

In this paper, wepropose FALCON, a system that rapidly

identif es and reacts to computation and communication

fail-slows without human intervention. FALCON achieves

this through two subsystems, FALCON-DETECT and FAL-

CON-M ITIGATE. FALCON-DETECT employsanon-intrusive,

framework-agnostic mechanism for fail-slow detection. It

keeps track of the training iteration time on each worker

and identif es prolonged iterations using the Bayesian On-

lineChange-point Detection (BOCD) algorithm [2]. It then

initiates lightweight prof ling on each worker to obtain a f ne-

grained execution prof le for each parallelization group, with-

out interrupting theongoing training job. By analyzing these

execution prof les, it narrows thesearch space to a few suspi-

ciousworker groupswherefail-slowsmay reside. To pinpoint

their exact locationswithin thesegroups, FALCON-DETECT

brief y pauses the training job and runsbenchmarking tests to

validatetheGPU computationand link communicationperfor-

manceon eachworker. Slow GPUsand linksare then f agged

as computation and communication fail-slows. Compared

to full-job validation that involves benchmarking all GPUs

and communication links, this design offers a lightweight

solution.

Once fail-slows are detected, FALCON reacts with FAL-

CON-M ITIGATE, using an eff cient mitigationmechanism. As

fail-slows are usually transient (e.g., due to network con-

gestion or CPU contention), simply handling them as fail-

stopsusing checkpoint-and-restart isan overkill. In general,

fail-slows can be tackled using four strategies: (S1) doing

nothing, (S2) redistributingmicro-batchesacrossdataparallel

groups to alleviate the load on slow GPUs, (S3) adjusting

theparallelization topology to movecongested links to light-

traff c groups, and (S4) treating fail-slowsas fail-stopsusing

checkpoint-and-restart. Aswemove fromS1 to S4, themit-

igation effectiveness improves, but the cost also increases.

Therefore, thechoiceof optimal strategy dependson thedu-

ration (and severity) of theongoing fail-slows, which cannot

beknown a priori. Thisproblem resembles theclassical ski-

rental problem [19]. Drawing inspirations from itssolution,

we propose an effective ski-rental-like heuristic that starts

with a low-cost strategy (S1) and progressively switches to

amoreeffective, yet costly one if fail-slow persists and the

current strategy proves ineffective. Themechanism falls back

to checkpoint-and-restart asa last resort.

We have implemented FALCON with FALCON-DETECT

asa framework-independent detection system and FALCON-

M ITIGATE asaplugin for Megatron-LM [42]. WeuseFAL -

CON-DETECT as the primary tool in our characterization

study to identify computation and communication fail-slows

for 499 sampling jobs submitted to the production cluster.

Cross validation with human inspection shows that FAL-

CON-DETECT correctly diagnoses 498 jobs (99.8% accu-

racy), with less than 1% overhead. We further evaluate FAL-

CON-M ITIGATE with manually injected fail-slows. FALCON-

M ITIGATE reduces the slowdown from computation fail-

slowsby up to 82.9% and from communication fail-slowsby

up to 61.5%. Large-scale experiments involving a training

job on 64 H800 GPUsdemonstrate that FALCON mitigates

theslowdown of fail-slowsby 60.1%. Our contributionsare

summarized as follows:

1. We present the f rst comprehensive characterization

study in a production cluster to understand the over-

all characteristicsand performance impactsof fail-slow

failures in hyperscaleLM training.

2. We propose FALCON-DETECT, a non-intrusive,

framework-agnostic detection system that identif es

computation and communication fail-slowsat runtime.

3. We propose FALCON-M ITIGATE, a system that effec-

tively addresses fail-slow failures through anovel multi-

level straggler mitigationmechanism.

2 Background and Motivation

Hyperscale training can require thousandsof petaFLOP/sof

compute power, necessitating the use of high-performance

computing (HPC) clusters [8, 18, 29, 36]. These HPC clus-

ters typically consist of tensof thousandsof GPUs intercon-

nected through high-speed fabrics such as Inf niBand [35]
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Straggler Characterization: Overview

Cluster sampling
• Computation stragglers: less 

frequent, low impact

• Communication stragglers: frequent, 
high impact

Trace inspection for LLM training
• Mean straggler duration: 72 mins 

• Avg training slowdown: 34.59%
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minutes, resulting in amaximum performancedrop of 21.6%.

Correspondingly, the jobmeasured simultaneousdeclines in

SM utilization acrossall four GPUsduring fail-slow periods

(upper-right), suggesting GPU slowdown. To validate this,

we paused the job and conducted a matrix computation to

assessGPU performanceupon fail-slow detection, but found

no performancedegradation. Further investigation revealed

asurge in thenumber of high-CPU jobscoinciding with the

fail-slow occurrence (bottom-left), leading to a decreased

CPU satisfaction rate (bottom-right), increased CPU time,

and ultimately, a reduction in throughput.

Case-2: GPU performancedegradation. Computation fail-

slowscan also beattributed toGPU performancedegradation,
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Figure3 illustratesacasewhere the job under study experi-
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Figure 2: A case of a fail-slow job due to CPU contention.

Upper-left: Training throughput. Upper-r ight: GPU SM

utilization of the four GPUs used by this job. Bottom-left:

The number of high-CPU jobs running on the same node.

Bottom-r ight: CPU satisfaction rateof the training job (red)
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Bottom-r ight: Reported GPU temperature.
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characterization study.

Compared to fail-stops, fail-slow failuresaremoreelusive

to detect and locate [8,18], especially when advanced hybrid

parallelism techniquesareemployed [29,42], which combine

tensor, data, pipeline, and possibly context and expert paral-

lelism toexpeditethetrainingprocess[9,22]. Current practice

reliesmostly onmanual inspection, which is time-consuming

and labor-intensive. Although state-of-the-art validation tools

and benchmarks exist [49,55], using them to locate the de-

graded component requiresstopping and restarting theentire

training job, which isprohibitively expensive. Furthermore,

the availability of multiple training frameworks [3,29] and

therapid evolution of model architectures[8,22,34,40] neces-

sitate that thedetectionmechanismbeboth framework- and

model-agnostic. Additionally, pinpointing theonset of a fail-

slow event and differentiating it from occasional performance

f uctuationsadd to thechallenges.

In this paper, wepropose FALCON, a system that rapidly

identif es and reacts to computation and communication

fail-slows without human intervention. FALCON achieves

this through two subsystems, FALCON-DETECT and FAL-

CON-M ITIGATE. FALCON-DETECT employsanon-intrusive,

framework-agnostic mechanism for fail-slow detection. It

keeps track of the training iteration time on each worker

and identif es prolonged iterations using the Bayesian On-

lineChange-point Detection (BOCD) algorithm [2]. It then

initiates lightweight prof ling on each worker to obtain a f ne-

grained execution prof le for each parallelization group, with-

out interrupting theongoing training job. By analyzing these

execution prof les, it narrows thesearch space to a few suspi-

ciousworker groupswherefail-slowsmay reside. To pinpoint

their exact locationswithin thesegroups, FALCON-DETECT

brief y pauses the training job and runsbenchmarking tests to

validatetheGPU computationand link communicationperfor-

manceon eachworker. Slow GPUsand linksare then f agged

as computation and communication fail-slows. Compared

to full-job validation that involves benchmarking all GPUs

and communication links, this design offers a lightweight

solution.

Once fail-slows are detected, FALCON reacts with FAL-

CON-M ITIGATE, using an eff cient mitigationmechanism. As

fail-slows are usually transient (e.g., due to network con-

gestion or CPU contention), simply handling them as fail-

stopsusing checkpoint-and-restart isan overkill. In general,

fail-slows can be tackled using four strategies: (S1) doing

nothing, (S2) redistributingmicro-batchesacrossdataparallel

groups to alleviate the load on slow GPUs, (S3) adjusting

theparallelization topology to movecongested links to light-

traff c groups, and (S4) treating fail-slowsas fail-stopsusing

checkpoint-and-restart. Aswemove fromS1 to S4, themit-

igation effectiveness improves, but the cost also increases.

Therefore, thechoiceof optimal strategy dependson thedu-

ration (and severity) of theongoing fail-slows, which cannot

beknown a priori. Thisproblem resembles theclassical ski-

rental problem [19]. Drawing inspirations from itssolution,

we propose an effective ski-rental-like heuristic that starts

with a low-cost strategy (S1) and progressively switches to

amoreeffective, yet costly one if fail-slow persists and the

current strategy proves ineffective. Themechanism falls back

to checkpoint-and-restart asa last resort.

We have implemented FALCON with FALCON-DETECT

asa framework-independent detection system and FALCON-

M ITIGATE asaplugin for Megatron-LM [42]. WeuseFAL -

CON-DETECT as the primary tool in our characterization

study to identify computation and communication fail-slows

for 499 sampling jobs submitted to the production cluster.

Cross validation with human inspection shows that FAL-

CON-DETECT correctly diagnoses 498 jobs (99.8% accu-

racy), with less than 1% overhead. We further evaluate FAL-

CON-M ITIGATE with manually injected fail-slows. FALCON-

M ITIGATE reduces the slowdown from computation fail-

slowsby up to 82.9% and from communication fail-slowsby

up to 61.5%. Large-scale experiments involving a training

job on 64 H800 GPUsdemonstrate that FALCON mitigates

theslowdown of fail-slowsby 60.1%. Our contributionsare

summarized as follows:

1. We present the f rst comprehensive characterization

study in a production cluster to understand the over-

all characteristicsand performance impactsof fail-slow

failures in hyperscaleLM training.

2. We propose FALCON-DETECT, a non-intrusive,

framework-agnostic detection system that identif es

computation and communication fail-slowsat runtime.

3. We propose FALCON-M ITIGATE, a system that effec-

tively addresses fail-slow failures through anovel multi-

level straggler mitigationmechanism.

2 Background and Motivation

Hyperscale training can require thousandsof petaFLOP/sof

compute power, necessitating the use of high-performance

computing (HPC) clusters [8, 18, 29, 36]. These HPC clus-

ters typically consist of tensof thousandsof GPUs intercon-

nected through high-speed fabrics such as Inf niBand [35]

2

Stragglers are transient, frequent, and can cause significant slowdown!



Computation Stragglers: CPU Contention

• Multiple collocated jobs 
contend for host CPUs

• Occasional occurrence
• ~1%, 4/392 jobs 

• Short-lived
• mean duration: ~10 mins
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Category
OnlineProbing Off ine Inspection

1-Node 4-Node At Scale (≥ 512GPUs)
No fail-slow 386 64 11

CPU Contention 4 1 0

GPU Degradation 2 0 0

Network Congestion 0 42 13

Multiple Issues 0 0 3

Total # Jobs 392 107 27

Avg. JCT Slowdown 11.79% 15.45% 34.59%

Table1: Root causesand JCT slowdown of fail-slow issues

in our characterization study.

3.2 How Computation Fail-SlowsManifest?

Sampling jobs. We start to characterize computation fail-

slowsoccurred on individual nodes. Wesubmitted 400 single-

node training jobs to our cluster, of which 392 successfully

completed without fail-stop errors. Each job trained aGPT2-

11B model on one node using 4 H800 GPUswith a hybrid

parallelism strategy of (2TP, 1DP, 2PP) to fully utilizeGPU

memory. Thetraining framework used isMegatron-LM. Each

job ran 10,000 iterations, taking 70 to 90 minutes. These

sampling jobswerescheduled to run on approximately 500

out of 1,800 H800GPUs in our cluster.

Frequency and impacts. Assummarized in Table1, six out

of 392 sampling jobsexperienced computation fail-slows. Of

these, four jobswere slowed down due to CPU contention,

and two due toGPU performancedegradation. On average,

these computation fail-slows persist for about 10 minutes,

extending thejob completion time(JCT) by 11.79%. Tobetter

understand the root causes of these issues, wenext provide

two casestudies.

Case-1: CPU contention. As shown in Figure2 (upper-left),

the job under study experienced two fail-slowsat 22 and 55

minutes, resulting in amaximum performancedrop of 21.6%.

Correspondingly, the jobmeasured simultaneousdeclines in

SM utilization acrossall four GPUsduring fail-slow periods

(upper-right), suggesting GPU slowdown. To validate this,

we paused the job and conducted a matrix computation to

assessGPU performanceupon fail-slow detection, but found

no performancedegradation. Further investigation revealed

asurge in thenumber of high-CPU jobscoinciding with the

fail-slow occurrence (bottom-left), leading to a decreased

CPU satisfaction rate (bottom-right), increased CPU time,

and ultimately, a reduction in throughput.

Case-2: GPU per formancedegradation. Computation fail-

slowscan also beattributed to GPU performancedegradation,

often linked to frequency reduction due to thermal throttling.

Figure3 illustratesacasewhere the job under study experi-

enced slowdown in the f rst 10 minutes (upper-left), result-

ing in under-utilization of all four GPUs (upper-right). Our

prof ling indicated that GPU0 was 20% slower than others

(bottom-left) and recorded an unusually high temperatureof

nearly 70◦C. Notably, rising temperaturesdo not always lead

Figure 2: A case of a fail-slow job due to CPU contention.

Upper-left: Training throughput. Upper-r ight: GPU SM

utilization of the four GPUs used by this job. Bottom-left:

The number of high-CPU jobs running on the same node.

Bottom-r ight: CPU satisfaction rateof the training job (red)

and other colocated jobs (blue).

Figure 3: A case of a fail-slow job due to GPU perfor-

mancedegradation. Upper-left: Throughput of the training

job. Upper-r ight: GPU SM utilization of the four GPUsused.

Bottom-left: Normalized GPU performanceduring fail-slow.

Bottom-r ight: ReportedGPU temperature.

to performance issues; this may indicate a hardware prob-

lem, with an occurrence rateof about 0.5%, consistent with

ByteDance’s report [18].

3.3 How Communication Fail-SlowsManifest?

Sampling jobs. To explore communication fail-slows, we

submitted 120 four-node training jobs, of which 107 success-

fully completed without fail-stop. Each job utilized 8 A100

GPUs across 4 nodes to train a GPT2-7B model. The par-

allelism strategy employed was (2TP, 4DP, 1PP), whereTP

communicationsoccurred intra-nodeviaNVSwitch, and DP

communicationswere inter-node through a400GbpsRoCE

link. Each job executed 10,000 iterations, taking approxi-

mately 5 hours. These jobsweredistributed among about 690

out of 2,600 A100GPUs in our cluster.

Frequency and impacts. Asdetailed in Table1, 43out of 107

jobsexperienced fail-slows. Among them, onejobwasslowed

due to CPU contention, while the remaining 42 encountered

network congestion. Theaverageduration of theseslowdowns

4

CPU burst of BG jobs → CPU contention
→ More time spent on CPU operations 
→ training slowdown

A case of CPU contention
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Multiple Issues 0 0 3

Total # Jobs 392 107 27

Avg. JCT Slowdown 11.79% 15.45% 34.59%
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node training jobs to our cluster, of which 392 successfully

completed without fail-stop errors. Each job trained aGPT2-
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memory. Thetraining framework used isMegatron-LM. Each

job ran 10,000 iterations, taking 70 to 90 minutes. These

sampling jobswerescheduled to run on approximately 500

out of 1,800 H800GPUs in our cluster.

Frequency and impacts. Assummarized in Table1, six out

of 392 sampling jobsexperienced computation fail-slows. Of

these, four jobswere slowed down due to CPU contention,

and two due toGPU performancedegradation. On average,

these computation fail-slows persist for about 10 minutes,

extending thejobcompletion time(JCT) by 11.79%. Tobetter

understand the root causesof these issues, wenext provide

two casestudies.

Case-1: CPU contention. Asshown in Figure2 (upper-left),

the job under study experienced two fail-slowsat 22 and 55

minutes, resulting in amaximum performancedrop of 21.6%.

Correspondingly, the jobmeasured simultaneousdeclines in

SM utilization acrossall four GPUsduring fail-slow periods

(upper-right), suggesting GPU slowdown. To validate this,

we paused the job and conducted a matrix computation to

assessGPU performanceupon fail-slow detection, but found

no performancedegradation. Further investigation revealed

asurge in thenumber of high-CPU jobscoinciding with the

fail-slow occurrence (bottom-left), leading to a decreased

CPU satisfaction rate (bottom-right), increased CPU time,

and ultimately, a reduction in throughput.

Case-2: GPU per formancedegradation. Computation fail-

slowscan also beattributed to GPU performancedegradation,

often linked to frequency reduction due to thermal throttling.

Figure3 illustratesacasewhere the job under study experi-

enced slowdown in the f rst 10 minutes (upper-left), result-

ing in under-utilization of all four GPUs (upper-right). Our

prof ling indicated that GPU0 was 20% slower than others

(bottom-left) and recorded an unusually high temperatureof

nearly 70◦C. Notably, rising temperaturesdo not always lead

Figure 2: A case of a fail-slow job due to CPU contention.

Upper-left: Training throughput. Upper-r ight: GPU SM

utilization of the four GPUs used by this job. Bottom-left:

The number of high-CPU jobs running on the same node.

Bottom-r ight: CPU satisfaction rateof the training job (red)

and other colocated jobs (blue).

Figure 3: A case of a fail-slow job due to GPU perfor-

mancedegradation. Upper-left: Throughput of the training

job. Upper-r ight: GPU SM utilization of the four GPUsused.

Bottom-left: Normalized GPU performanceduring fail-slow.

Bottom-r ight: Reported GPU temperature.

to performance issues; this may indicate a hardware prob-

lem, with an occurrence rateof about 0.5%, consistent with

ByteDance’s report [18].

3.3 How Communication Fail-SlowsManifest?

Sampling jobs. To explore communication fail-slows, we

submitted 120 four-node training jobs, of which 107 success-

fully completed without fail-stop. Each job utilized 8 A100

GPUs across 4 nodes to train a GPT2-7B model. The par-

allelism strategy employed was (2TP, 4DP, 1PP), whereTP

communicationsoccurred intra-nodeviaNVSwitch, and DP

communicationswere inter-node through a400GbpsRoCE

link. Each job executed 10,000 iterations, taking approxi-

mately 5 hours. These jobsweredistributed among about 690

out of 2,600 A100GPUs in our cluster.

Frequency and impacts. Asdetailed inTable1, 43out of 107

jobsexperienced fail-slows. Among them,onejobwasslowed

due to CPU contention, while the remaining 42 encountered

networkcongestion. Theaverageduration of theseslowdowns

4

Computation Stragglers: GPU Degradation

• Mainly due to thermal throttling
• High temperature, e.g., >70℃

• Occasional occurrence
• ~0.5%, 2/392 jobs

• Short-lived
• ~10 mins mean duration
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GPU0 measured high temperature, 
resulting in thermal throttling

A case of GPU degradation

Straggler GPU 
degrad.



Communication Stragglers: Congestion

Network congestion
• High NP_CNP_SENT/MARK/HANDLED recorded during fail-slow

• High occurrence frequency: ~40% of 4-node jobs (42/107)

• Long duration: ~24 mins

15
Figure 4: A case of fail-slow jobs caused by network con-

gestion. Left: Training throughput. Center : Thenumber of

congestion notif cation packets (×1000) sent by NICs. Right:
AverageGPU SM utilization of the8GPUsused by the job.

Comm. Type
Intra-GPU Intra-Node Inter-Node

A100 H800 NVL PIX RDMA

CoV 0.01 0.01 0.02 0.09 0.29

Table2: Performancevariation of key communication com-

ponents. A higher CoV indicates lessstability.

wasabout 24minutes, extending theaverageJCT by 15.45%.

Network congestion. Compared to computation slowdowns,

network congestion emerges as a more signif cant factor

contributing to performancedegradation in multi-node train-

ing [8,37], with anotably higher frequency. Figure4 presents

a case study on a sampling job that experienced two com-

munication fail-slowsat t=90 and t=265minutes. The initial

fail-slow resulted in throughput dipping from 0.57 to 0.41

iterations/s; shortly thereafter, at t=265, thesecond slowdown

further reduced throughput to merely 0.31 iterations/s (Fig-

ure4 (left)). Weobserved that theSM utilization acrossall 8

GPUsdropped simultaneously upon theonset of the fail-slow

(right), despite theGPUs remaining healthy. Further inves-

tigation revealed a strong correlation between the surge of

congestion notif cation packets (CNPs) reported by theNICs

and the training slowdown (center).

Per formance var iation in communication. We further

benchmarked communication performancevarianceamong

key components involved in training, including intra-GPU

copies, inter-GPU communication via NVLink/NVSwitch

(NVL), PCIeswitch (PIX), and inter-nodeRDMA links. To

evaluate their stability, wecalculated thecoeff cient of varia-

tion (CoV) of their communication latency across thesesam-

pling jobs. As summarized in Table 2, both intra-GPU and

NVL communication are stable, with CoVs below 0.02. In

comparison, PIX showsmorevariability with aCoV of 0.09.

Notably, inter-nodeRDMA exhibits thehighest performance

variance, with aCoV of 0.29, making it the least stableand

most prone to fail-slow incidents.

3.4 How Do Fail-SlowsManifest at Scale?

Limited by thesmall scaleof each sampling job, onlineprob-

ing can only identify fail-slowsoccurred on individual nodes

or links (§3.2 and §3.3). In large-scale training, asingleslow

GPU or congested link can delay theentire job, magnifying

Figure5: Two 1024-GPU jobs that failed slow dueto network

congestion. Left: An LLM training job. Right: An MoE

training job with high varianceand ladder-shaped fail-slow.

the impact of stragglers. To characterize fail-slowsat a larger

scale, wecollected andmanually examinedaone-month trace

containing27 large-scaletraining jobssubmitted toour cluster

in July 2024, each utilizing 512 to 1024GPUs.

Frequency and impacts. Among 27 jobs, 16 encountered

fail-slows, delaying theaverageJCT by 34.59%. In particular,

20% of these jobs were delayed more than 50% (Figure 1,

left). Themean fail-slow duration is72minutes, signif cantly

longer than thatmeasured in thesmall sampling jobs(Figure1,

right). Table1 details the root causesof theencountered fail-

slows, where13 slow jobsweredue to network congestion,

while the remainingwereattributed to both network andGPU

degradation. Weobserved noCPU contention for these jobs

as they ran exclusively on the training nodes.

Deep dive. Figure5 illustrates the throughput of two 1024-

GPU jobs, onefor LLM training and theother for MoEmodel

training. Both jobs experienced severe network congestion,

leading to considerable throughput f uctuations, oneat the ini-

tial stage (left) and theother throughout the training process

(right). Worse still, at this scale, communication and com-

putation fail-slows often compound, causing more damage

to training. Figure6 illustratesacasestudy. Throughout the

training process, theobserved throughput closely alignswith

theGPU SM utilization. The f rst severenetwork congestion

arose at t=62 minutes, slashing the training throughput by

80%. This degradation was further exacerbated by a GPU

thermal throttling event occurred at around t=80 while the

network congestion remainsunabated, further reducing the

throughput to just 10% of the normal performance. Subse-

quently, from t=120 onward, another severenetwork conges-

tion persisted for about two hours, cutting the throughput by

85% again. This casehighlights thecompounding effectsof

multipleperformance issues in large-scale training scenarios,

which signif cantly undermines training eff ciency.

Evidence from other companies. In addition to our study,

straggler issues have been reported in Meta’s Llama train-

ing [8] and ByteDance’sMegaScale [18]. Our contactswith

engineers from other companiesbring attention to thesimilar

fail-slow problems in LLM training, even on asingle-tenant

cluster with over 10,000 GPUs. The general consensus, as

noted in [8,18], is that fail-slowsarehard to detect at scale.
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Straggler Congestion

Comm. 
Type

Intra-Node Inter-Node

NVL PIX RDMA

CoV 0.02 0.09 0.29

A case of network congestion

Intra-node interconnects are stable,
Inter-node RDMA has large variance



Stragglers at Scale: Trace Analysis

• 16/27 (~60%) training jobs experienced stragglers, mean duration ~72 mins
• Measured up to 90% throughput loss in 1024-GPU jobs

• Computation and communication stragglers may occur simultaneously

• Performance across iterations can vary significantly
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Abnormal
Temperature!

Congestion!

Figure 1: Case study of a 1024-GPU training job experiencing multiple performance issues.

Throughout the training process, the observed throughput closely aligns with the GPU SM

utilization. The f rst severe network congestion occurred at t=62 minutes, cutting the training

throughput by 80%. This degradation was further exacerbated by a GPU thermal throttling

event occurredat around t=80whilethenetwork congestion remainsunabated, further reducing

the throughput to just 10% of the normal performance. Subsequently, from t=120 onward,

another severe network congestion persisted for about two hours, slashing the throughput by

85% again. This case highlights the compounding effects of multiple performance issues in

large-scale training scenarios, which signif cantly undermines training eff ciency.

Master Node

Global Controller
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Test Scheduler

Test Dispatcher

Worker Nodes
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Training Processes

� � � � � Model/Apps

Distributed Training Framework

Monitor Benchmark Executor

System Libs (e.g., NCCL, CUDA)

Hardware Devices

Tracking & Report Fail-slow
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Figure 2: Architecture overview of the intended detection system, where components intro-

duced by our system are highlighted in cyan. The system will identify stragglers through

a three-phase workf ow: tracking, prof ling, and validation. (1) In the tracking phase, each

worker keeps track of the training iteration time for all training processes, and detects slow

iterations that indicate the onset of stragglers. The worker reports these issues to the master,

which transitions the system to the prof ling phase. (2) During the prof ling phase, the mas-

ter instructs each worker to collect the detailed execution prof les of the ongoing training job.

These log prof les aresent to theGl obal Anal yzer , which identif es suspiciousworker groups

that may contain stragglers. Themaster then transitions thesystem to thevalidation phase. (3)

In this f nal validation phase, the system initiates straggler validations within the suspicious

worker groups to precisely locateslow GPUsor congested network links.

Figure 4: A case of fail-slow jobs caused by network con-

gestion. Left: Training throughput. Center : Thenumber of

congestion notif cation packets (×1000) sent by NICs. Right:
AverageGPU SM utilization of the8GPUsused by the job.

Comm. Type
Intra-GPU Intra-Node Inter-Node

A100 H800 NVL PIX RDMA

CoV 0.01 0.01 0.02 0.09 0.29

Table2: Performancevariation of key communication com-

ponents. A higher CoV indicates lessstability.

comparison, PIX showsmorevariability with aCoV of 0.09.

Notably, inter-nodeRDMA exhibits thehighest performance

variance, with aCoV of 0.29, making it the least stableand

most prone to fail-slow incidents.

3.4 How Do Fail-SlowsManifest at Scale?

Limited by thesmall scaleof each sampling job, onlineprob-

ing can only identify fail-slowsoccurred on individual nodes

or links (§3.2 and §3.3). In large-scale training, asingleslow

GPU or congested link can delay theentire job, magnifying

the impact of stragglers. To characterize fail-slowsat a larger

scale, wecollected andmanually examined aone-month trace

containing27 large-scaletraining jobssubmitted toour cluster

in July 2024, each utilizing 512 to 1024GPUs.

Frequency and impacts. Among 27 jobs, 16 encountered

fail-slows, delaying theaverageJCT by 34.59%. In particular,

20% of these jobs were delayed more than 50% (Figure 1,

left). Themean fail-slow duration is72minutes, signif cantly

longer than thatmeasured in thesmall sampling jobs(Figure1,

right). Table1 details the root causesof theencountered fail-

slows, where13 slow jobsweredue to network congestion,

while the remainingwereattributed to both network andGPU

degradation. Weobserved noCPU contention for these jobs

as they ran exclusively on the training nodes.

Deep dive. Figure5 illustrates the throughput of two 1024-

GPU jobs, onefor LLM training and theother for MoEmodel

training. Both jobsexperienced severe network congestion,

leading to considerable throughput f uctuations, oneat the ini-

tial stage (left) and theother throughout the training process

(right). Worse still, at this scale, communication and com-

putation fail-slows often compound, causing more damage

to training. Figure6 illustratesacasestudy. Throughout the

training process, theobserved throughput closely alignswith

theGPU SM utilization. The f rst severenetwork congestion

arose at t=62 minutes, slashing the training throughput by

80%. This degradation was further exacerbated by a GPU

Figure5: Two 1024-GPU jobs that failed slow dueto network

congestion. Left: An LLM training job. Right: An MoE

training job with high varianceand ladder-shaped fail-slow.

Abnormal
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Figure6: Casestudy of a1024-GPU training jobexperiencing

multipleperformance issues, where fail-slow iscaused by a

compound of high GPU temperatureand congested network.

thermal throttling event occurred at around t=80 while the

network congestion remains unabated, further reducing the

throughput to just 10% of the normal performance. Subse-

quently, from t=120 onward, another severenetwork conges-

tion persisted for about two hours, cutting the throughput by

85% again. This casehighlights thecompounding effectsof

multiple performance issues in large-scale training scenarios,

which signif cantly undermines training eff ciency.

Evidence from other companies. In addition to our study,

straggler issues have been reported in Meta’s Llama train-

ing [8] and ByteDance’sMegaScale [18]. Our contactswith

engineers from other companiesbring attention to thesimilar

fail-slow problems in LLM training, even on asingle-tenant

cluster with over 10,000 GPUs. The general consensus, as

noted in [8,18], is that fail-slowsarehard to detect at scale.

3.5 Takeaways

Takeaway #1. Fail-slows are usually transient, primarily

caused by degradation in computation and communication;

theformer typically stem fromslow GPUsor CPU contention,

while the latter aremainly due to network congestion.

Takeaway #2. Computation fail-slows tend to beshort-lived

and less frequent, leading to relatively minor performance

degradation. In contrast, cross-node communication fail-

slows are more common and tend to last longer, resulting

in moresignif cant training slowdowns.

Takeaway #3. As training scalesup, the likelihood of simulta-

neously encounteringmultipleperformance issues increases.

Thecompounding effectsof these issuescan lead to signif -

cant training slowdowns, potentially exceeding 90%.
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ing [8,37], with anotably higher frequency. Figure4 presents
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fail-slow resulted in throughput dipping from 0.57 to 0.41

iterations/s; shortly thereafter, at t=265, thesecond slowdown

further reduced throughput to merely 0.31 iterations/s (Fig-
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GPUsdropped simultaneously upon theonset of the fail-slow

(right), despite the GPUs remaining healthy. Further inves-

tigation revealed a strong correlation between the surge of

congestion notif cation packets (CNPs) reported by theNICs

and the training slowdown (center).
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key components involved in training, including intra-GPU
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evaluate their stability, wecalculated thecoeff cient of varia-
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pling jobs. As summarized in Table 2, both intra-GPU and

NVL communication are stable, with CoVs below 0.02. In

comparison, PIX showsmorevariability with aCoV of 0.09.
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variance, with aCoV of 0.29, making it the least stableand

most prone to fail-slow incidents.

3.4 How Do Fail-SlowsManifest at Scale?

Limited by thesmall scaleof each sampling job, onlineprob-

ing can only identify fail-slowsoccurred on individual nodes

or links (§3.2 and §3.3). In large-scale training, asingleslow

GPU or congested link can delay theentire job, magnifying

Figure5: Two 1024-GPU jobs that failed slow due to network

congestion. Left: An LLM training job. Right: An MoE

training job with high varianceand ladder-shaped fail-slow.

the impact of stragglers. To characterize fail-slowsat a larger

scale, wecollected andmanually examinedaone-month trace

containing27 large-scaletraining jobssubmitted toour cluster

in July 2024, each utilizing 512 to 1024GPUs.

Frequency and impacts. Among 27 jobs, 16 encountered

fail-slows, delaying theaverageJCT by 34.59%. In particular,

20% of these jobs were delayed more than 50% (Figure 1,

left). Themean fail-slow duration is72minutes, signif cantly

longer than thatmeasured in thesmall sampling jobs(Figure1,

right). Table1 details the root causesof theencountered fail-

slows, where13 slow jobsweredue to network congestion,

while the remainingwereattributed to both network andGPU

degradation. Weobserved noCPU contention for these jobs

as they ran exclusively on the training nodes.

Deep dive. Figure5 illustrates the throughput of two 1024-

GPU jobs, onefor LLM training and theother for MoEmodel

training. Both jobs experienced severe network congestion,

leading to considerable throughput f uctuations, oneat the ini-

tial stage (left) and theother throughout the training process

(right). Worse still, at this scale, communication and com-

putation fail-slows often compound, causing more damage

to training. Figure6 illustratesacasestudy. Throughout the

training process, theobserved throughput closely alignswith

theGPU SM utilization. The f rst severenetwork congestion

arose at t=62 minutes, slashing the training throughput by

80%. This degradation was further exacerbated by a GPU

thermal throttling event occurred at around t=80 while the

network congestion remainsunabated, further reducing the

throughput to just 10% of the normal performance. Subse-

quently, from t=120 onward, another severenetwork conges-

tion persisted for about two hours, cutting the throughput by

85% again. This casehighlights thecompounding effectsof

multipleperformance issues in large-scale training scenarios,

which signif cantly undermines training eff ciency.

Evidence from other companies. In addition to our study,

straggler issues have been reported in Meta’s Llama train-

ing [8] and ByteDance’sMegaScale [18]. Our contactswith

engineers from other companiesbring attention to thesimilar

fail-slow problems in LLM training, even on asingle-tenant

cluster with over 10,000 GPUs. The general consensus, as

noted in [8,18], is that fail-slowsarehard to detect at scale.
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Three Takeaways

• Stragglers are transient, primarily caused by degradation in 
computation (CPU contention & slow GPUs) and communication 
(network congestion)

• Computation stragglers are short-lived, less frequent; 
communication stragglers are more frequent and last longer 
time, causing more significant degradation

• Large-scale training experienced both computation and 
communication stragglers, causing significant throughput loss, 
potentially exceeding 90%
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Agenda

• Reliability issues in large-scale training.

• How do stragglers manifest in hybrid-parallel training at scale?

• How can stragglers be detected rapidly?

• How should stragglers be mitigated effectively?

• How do our detection and mitigation solutions perform?

18
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Design Requirements

• Non-intrusive and framework-
transparent

• Rapid and accurate

• Fully automated

• Lightweight, with minimum 
performance overhead



Overview of Greyhound-Detect System

Master Node

Global Controller

Global Analyzer

Validator

Test Scheduler

Test Dispatcher

Worker Nodes

Local Controller Local Analyzer

Training Processes

𝑹𝒂𝒏𝒌𝒊 Model/Apps

Distributed Training Framework

Monitor Benchmark Executor

System Libs (e.g., NCCL, CUDA)

Hardware Devices

2. Report Fail-slow

3. Profiling

4. Validation

1. Tracking
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Technical Challenges

• Challenge #1: How to infer the iteration time without framework’s cooperation?

• Challenge #2: How to detect the onset and termination of a straggler event?

• Challenge #3: How to profile the slow GPU or communication group? [In Paper]

• Challenge #4: How to locate the congested link within a group? [In Paper]

21



Non-Intrusive Iteration Time Inference

Challenge #1: How to infer the iteration time without framework’s cooperation?
• Hook to NCCL calls and intercept Communication Ops via Linux’s LD_PRELOAD

• Training is iterative, w/ periodic Communication Op patterns over iterations

• Identify periodic Op patterns via time-series analysis and infer the iteration period

22

Iteration 1 Iteration 2 Iteration 3
RS AG AR

Communication Ops: ReduceScatter (RS), AllGather (AG), 2*AllReduce (AR)

Period #1 Period #2 Period #3

AR RS AG ARAR RS AG ARAR

T1 T5

Iteration time = T5 – T1



Detecting the Onset of a Slow Iteration

Challenge #2: How to detect the onset and termination of a straggler event?

Bayesian online change-point detection (BOCD) + Verification to filter out false-positives

• A Bayesian method for online change-point detection

• Run length

• Updating

23

The run length posterior at each time step;
darker indicates higher probability

A time series

Credit: Adams and MacKay, https://gregorygundersen.com/blog/2019/08/13/bocd/



Non-Intrusive Straggler Inference

24

Master Node

Global Controller

Global Analyzer

Validator

Test Scheduler

Test Dispatcher

Worker Nodes

Local Controller Local Analyzer

Training Processes

𝑹𝒂𝒏𝒌𝒊 Model/Apps

Distributed Training Framework

Monitor Benchmark Executor

System Libs (e.g., NCCL, CUDA)

Hardware Devices

2. Report Fail-slow

Hook to NCCL calls and 
intercept Communication
Ops via LD_PRELOAD

Run time-series analysis
to infer iteration period 
and detect anomaly

1. Tracking



Agenda

• Reliability issues in large-scale training.

• How do stragglers manifest in hybrid-parallel training at scale?

• How can stragglers be detected rapidly?

• How should stragglers be mitigated effectively?

• How do our detection and mitigation solutions perform?
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Design Requirements

• Reactive rather than predictive 
• Straggler occurrence and 

durations are unpredictable

• Online adjustment without 
restarting the training job

• Effective for both computation 
and communication stragglers

26



Design Space: the Four Mitigation Strategies

(S1) Do nothing: simply ignore fail-slow problems.

(S2) Adjust micro-batch distribution:
• Idea: assign less #micro-batches to slow DP groups → load balancing across DP groups

(S3) Adjust parallelism topology:
• Key insight: DP is more communication intensive than PP

• Idea: adjust parallelism, use congested links to serve PP traffic, and healthy links for DP traffic

(S4) Checkpoint and Restart: last resort, treat stragglers as failures

27



Design Space: the Four Mitigation Strategies

(S1) Do nothing: simply ignore fail-slow problems.

(S2) Adjust micro-batch distribution:
• Idea: assign less #micro-batches to slow DP groups → load balancing across DP groups

(S3) Adjust parallelism topology:
• Key insight: DP is more communication intensive than PP

• Idea: adjust parallelism, use congested links to serve PP traffic, and healthy links for DP traffic

(S4) Checkpoint and Restart: last resort, treat stragglers as failures
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Optimal strategy depends on straggler impacts and duration, which cannot 
be known in prior



The Ski Rental Problem

A skier goes to a ski resort with two choices: (1) renting skis for $1 per day or (2) 
buying skis for $B. The skier has no idea how many days to ski and needs to decide 
at the beginning of each day whether to rent or buy skis.

• Optimal strategy: Rent until realizing you should have bought, then buy
• Rent on the first B-1 days, and then buy skis on the B-th day

• The cost is ≤2x of the ideal optimum, the best possible for a deterministic online algorithm

29

Cost

DayB-1 B

B-1

2B-1

Rent

Buy



Multi-Level 
Straggler 
Mitigation

Starts with a low-cost 
strategy (S1) and 
progressively switches
to more effective, yet 
more costly ones

S4

S3

S2

Cost

TimeT1 T2

S1

T3

Switch to S3

Switch to S2

Switch to S4

Observe

Observe

Observe
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Agenda

• Reliability issues in large-scale training.

• How do stragglers manifest in hybrid-parallel training at scale?

• How can stragglers be detected rapidly?

• How should stragglers be mitigated effectively?

• How do our detection and mitigation solutions perform?
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Methodology

• Testbed
• NVIDIA H800 SuperPOD, 400 Gbps IB

• Up to 256 H800 GPUs in 8 DGX servers

• Framework: Megatron-LM

• Straggler injection
• Slow computation: throttle GPU frequency 

with nvidia-smi

• Slow communication: launch 
communication-intensive jobs to create 
network congestion

32



How Accurate Is Detection?

Probing jobs: specially designed to detect slow computation and/or communication

• Type-A for slow comput.: 4x H800 on 1 node, GPT-2 11B, 2TP-2PP, 10K iterations

• Type-B for slow commun.: 8x A100 on 4 noes, GPT-2 7B, 2TP-4DP, 10K iterations

Manually verified the probing results via trace inspection

33

Type-A for slow computation
(single node) 

Type-B for slow communication
(4-node) 

Overhead: ~0.39% across all jobs, barely negligible



How Effective Is Mitigation?

Mitigating comput. stragglers (S2)
• Inject slow computations into 0-4 DP 

groups in a 4-DP training job

• Overhead: <30s even #DP=512.

Mitigating commun. stragglers (S3)
• Inject weak, medium and strong 

communication stragglers into 16-GPU 
training jobs w/ 4 and 8 PP stages

• Overhead: <50s in our cluster, 6.72x 
faster than ckpt-n-restart.

Slow commun. + slow comput.
• 16-GPU training w/ (4DP, 4PP)

34

Slow Communication
Slow ComputationAdjustTopo

Adjust Micro-batch

Restart

Figure17: Effectivenessof FALCON-M ITIGATE in acaseof

both computation and communication fail slow.

Figure18: Overhead introduced by FALCON-DETECT across

variousparallel strategies.

resumingat 1.7 iterations/s. Thisexperiment demonstratesthe

effectivenessof FALCON-M ITIGATE’smulti-level mitigation

algorithm in handling fail-slow issues arising from mixed

performance issues.

7.4 How Large Is theOverhead?

In this section, weevaluate thedetection andmitigation over-

head introduced by FALCON.

Detector overhead. To assess the overhead introduced by

FALCON-DETECT, we conducted training under the same

hybrid-parallel settings as in § 7.2. As shown in Figure 18,

theaverageoverhead isonly 0.39%, with amaximumof 1.1%

compared to training without thedetector. In some instances,

the iteration timewith thedetector is even lower than without

it—ref ecting training variability, as indicated by the0.0% in

green. These results demonstrate that the overhead of FAL-

CON-DETECT is negligible.

Micro-batch adjustment overhead. Weevaluate the over-

head for adjusting the micro-batch distribution, which pri-

marily arises from solving Equation 1. Asshown in Table6,

although this overhead increasesexponentially with thenum-

ber of DP groups, it remains around 30 seconds even with

512 DPgroups, showing itseff ciency for hyperscale training.

Topology adjustment overhead. Weevaluate the topology

adjustment overhead acrossvariousGPU memory utilization

levels. Asshown inFigure19, thismemory-basedapproachre-

ducespause timeby up to 6.72× compared to thedisk-based
baseline, primarily by eliminating checkpoint dumping and

loading times. Theperformancegainsaremorepronounced

#DPs 16 32 64 128 256 512

Time(s) 0.01 0.01 0.01 0.11 6.78 35.93

Table6: Time to f nd theoptimal micro-batch distribution.

Figure19: Breakdown of topology adjustment overhead.M

denotesmemory dump and load (our method), whileD repre-

sentsdisk-based as thebaselinemethod.

Healthy Thpt. Fail-slow Thpt. Mitigated Thpt. Slowdown

17.1 Iters/min 14.8 Iters/min 16.2 Iters/min -60.1%

Table7: Effectivenessof FALCON, which reduces the impact

of fail-slow by 60.1%.

with higher GPU memory utilization, as the disk operation

times increasesignif cantly for large I/O sizes.

7.5 How DoesFALCON Perform at Scale?

ToevaluateFALCON’sperformancein large-scaletraining,we

conduct ahybrid-parallel training of GPT2-13B on 64GPUs

using a (16DP, 4PP) conf guration. Wemanually inject two

communication and eight computation fail-slowsof varying

severity, as illustrated in Figure20, bottom. This training job

is executed twice with the same fail-slow trace: once with

FALCON and oncewithout it for comparison.

As shown in the top of Figure20, when the computation

stragglersarepresent, training throughput without FALCON

drops signif cantly throughout the slow periods, while it is

quickly recovered to near-optimal levels with FALCON in

place, showing the effectiveness of our micro-batch adjust-

ment strategy. During communication slowdowns, we initi-

ate brief pauses (at t=600 and t=2100) for topology adjust-

ments, each lasting under aminute, much faster than a typical

checkpoint-and-restart that takestensof minutes. Notably, the

compound of computation and communication issuescould

reduceperformanceby nearly 50%, but with FALCON, this

decline ismitigated to only 25%.

Wepresent theaverageperformance from both runs in Ta-

ble7. Without fail-slows, theaverage training throughput is

about 17.1 iterations/min. When fail-slows are introduced

but not mitigated, theaverage throughput drops to 14.8 itera-

tions/min. However, integrating FALCON allows throughput

to recover to 16.2 iterations/min under thesameconditions.

These results demonstrate that FALCON reduces slowdown

by 60.1%, improving end-to-end job completion time from

1.15× optimal to 1.05× optimal.

8 Related Work

Reliability issues in training. Several studies address the

fail-stop issueusing checkpoint-basedmethods[23,28,48], re-

computation approaches [45], and elastic frameworks[16,54].
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How Does Greyhound Perform at Scale?

• Training GPT2-40B on 256 GPUs using (8TP, 16DP, 2PP)
• Inject 2 communication stragglers and 8 computation stragglers of varying severity

35

End-to-end performance:
1.58x faster

Identify stragglers in 10s



Conclusion

36

• First comprehensive characterization study of straggler problems for LM training
• Stragglers are transient, frequent, and can result in significant training slowdown

• Computation stragglers are short-lived, less frequent; communication stragglers are more 
frequent and last longer time, causing more significant degradation

• Straggler detection
• Non-intrusive, rapid, accurate, and lightweight 

• Effective multi-level straggler mitigation
• Four possible mitigation strategies

• Start w/ a low-cost one and progressively switches to more effective, yet more costly ones

届かない恋をしていても 映しだす日がくるかな  ぼやけた答えが 见え始めるまでは  今もこの恋は 动き出せない
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