ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

AVAILABLE REPRODUCED

Greyhound: Hunting Fail-Slows in
Hybrid-Parallel Training at Scale

Tianyuan WuT , Wei Wangt, Yinghao Yu§, Siran Yang§, Wenchao Wu§,
Qinkai Duant, Guodong Yang§, Jiamang Wang§, Lin Qu§, Liping Zhang§

THong Kong University of Science and Technology §Alibaba Group

B FEREKE

THE HONG KONG Alibaba Group
UNIVERSITY OF SCIENCE ~ PEREEED

AND TECHNOLOGY

w

Agenda

* Reliability issues in large-scale training.

The Rapid Scaling of Models and Clusters

Long-sought quasiparticle could Fifty years after the Endangered What Salvadorans feared
transform quantum computing p. 134 Species Act, what's next? ; 134 about bitcoin p. 1375

‘.:l./]l(::‘E.];;.é)
3 AYAAAS
—

Terence Tao
IMO 2024

Al and
Mathematics

Al for mathematics
GPT-4 1000B?

Wild type e Optimally stable mRNA
~967.8 kcal mol™ (63.4% paired) :.)’g -2,487.3 kcal mol ' (83.6% paired)
(nigh free energy) o8 'i &% 4 (lowest free energy)
o P

* ~ 2 -

X °#b$ Do L. iy
ps - . \"'S(2" by M +444 Helix
E}% %‘ 7 $ X s Loop

B2 X0

Huawei PanGu LLM 200B

Baidu’s Al-assisted mRNA design
optimization featured in Nature
HelixFold, ERNIE 260B

The Grand Breakthrough of Large Models

LLM model sizes scale 8x every two years

64K 3 GPT-5
??PB
Scale-up
32K SuperPods?
Llama-3
16K 450B

16K GPUs, 54/Days
5D-Parallel

Parameters & Cluster Scale

8K ChatGPT
175B
i 6K GPUs, 10 Days
4K GPT-3 PanGu
1758 200B

2KGPUs*10 Days / 3D-Parallel / FSDP

]
-

BERT
340M
1K BGPUs, 1 Day' Data Parallel
2019 2020 2021 2023 2024
Year

» Model sizes grow 30,000x from 2019 to 2025
» Training scales from 8 to 100k GPUs since 2019
» Parallel strategies are evolving rapidly

Distributed Large Model Training at Scale

g
7
I
£
5 5
-
o
3
3
%
&
~N

Tensor parallelism (TP): partition individual
layers of a model over multiple devices

|

|

|

|

|

1)
Immputlng

Node

I (aGPus)
|
|
|
|
|
|
|

* Data parallelism (DP): shard training dataset
and replicate the model

/@@@%ﬁ'

potentially other parallelisms

* Pipeline parallelism (PP): partitiona model . ____~— __ e S S R ;
into layer groups, each being a pipeline stage ,____t___'_ ﬁf’i"“.“"i"”.&.-.'--t _____ |
* Other specialized parallelism | ﬁ ﬁg ﬁ@
e Context parallelism (CP), expert parallelism (EP) E Eﬁj] Eﬁfﬂ = Efm g;"
* Hybrid parallelism: combine DP, PP, TP, and oo | 0N Q= 0m e
% M\—V] K

&
3
i
MF
~
&5
=
33
_m

-~
ge
2
5
o

Credit: Song et al. “Optimus-CC: Efficient Large NLP Model Training with
3D Parallelism Aware Communication Compression,” in ASPLOS 2023 4

At hyperscale, failures
become the norm, rather .
than the exception! . |

Fail-Stop Failures

Complete halt of training due to fatal
software/hardware errors

 OPT-175B: 110 errors in two-month training on
1,000 A100 GPUs

* Llama-3: 419 unexpected failures in 54-day
training on 16,000 H100 GPUs

Extensively studied over the years
* Restart on checkpoints: CheckFreq (FAST’21),
Check-N-Run (NSDI’22), Gemini (SOSP’23)

* Redundant computation & dynamic parallelism
adjustments: Bamboo (NSDI’23), Oobleck
(SOSP’23), Recycle (SOSP’24)

[1] Zhang et al., “Opt: Open pre-trained transformer language models,” in arXiv:2205.01068, 2022.
[2] Grattafiori, Aaron, et al. “The llama 3 herd of models,” in arXiv:2407.21783, 2024.

Category Source Component Root Cause
GPU Processor Faulty GPU
GPU Memory GPU Memory Error
NIC / Switch Network / Connection Error
Infrastructure | Host CPU / Mem. Faulty Host Node
Disk / Filesystem Storage I/O Error
Power Supply Faulty Power Supply
Low-level Libraries MPI / NCCL / CUDA Error
DLT Framework Input / Assertion Error
DLT Framework Model Checkpoint Error
Framework Scheduler Job Preempted
Dataset Libraries Dataloader Error
DLT Framework CPU/GPU Out of Memory
Model Architecture Model Diverged
User Program Launch Script OS / Permission Error
Launch Script Invalid Mem. Access / SegFault
Launch Script Import Error

Fail-Slow Failures (Stragglers)

Components still functioning but slow
* Degraded computation: slow CPUs and GPUs
* Degraded communication: network/link congestion

Sometimes, hardware issues may cause still-functioning but slow stragglers
that are hard to detect. Even a single straggler can slow down thousands of
other GPUs, often appearing as functioning but slow communications.

RV Meta

Despite their prevalence, straggler problems remain not well studied

Agenda

 How do stragglers manifest in hybrid-parallel training at scale?

Straggler Characterization: Cluster Setup

Alibaba’s HPAI multi-tenant cluster for training & inference

* 10,000 GPUs: 1,800x H800, 2,600x A100,

* RoCEv2 Network: 4x 400 Gbps NICs for H800, 4x 200 Gbps NICs for A100 node
 Workloads: LLM training (majority), recommendation training, LLM inference

e Scheduler: Customized K8S scheduler

= === X x>~ % % Agregation
Inter-host link /
1 = HEREEE) S Agregation
ﬂ%? A\‘ S~ I &) |ntra-host link Distribution
GPU2 GPU2 GPU2 m ? % g/l i
ToR15 P ToR16 = |ntra-rail forwarding | mimiﬁl mmmi mﬂf-%i (35555550 SSSSisis | N
: T St :
L & & | —— Cross-rail forwardin D | D D | | D
g
CED | CEED/| CEED| CEED
e 2 e R CED- CED G- D
Host 1 Host 2 Host 3 Host N

Credit: Qian et al., “Alibaba HPN: A Data Center Network for Large Language Model Training,” in ACM SIGOMM 2024

Straggler Characterization: Methodology

Cluster sampling
* Repeatedly submit a large number of small probing jobs, which are randomly scheduled
* Probing jobs: specially designed to detect slow computation and/or communication
* Type-A for slow computation: 4x H800 on 1 node, GPT-2 11B, 2TP-2PP, 10K iterations
* Type-B for slow communication: 8x A100 on 4 noes, GPT-2 7B, 2TP-4DP, 10K iterations
e Sampling coverage:
* 400x Type-A jobs covering 500/1,800 H800
* 107x Type-B jobs covering 690/2,600 A100

Manual inspection of training log traces
* Collected log traces of large training jobs in one month, from July 1 to 31, 2024
e 27 Jobs in total, each requiring >=512 GPUs

Straggler Characterization: Overview

Cluster sampling

 Computation stragglers: less
frequent, low impact

 Communication stragglers: frequent,
high impact
Trace inspection for LLM training
* Mean straggler duration: 72 mins
* Avg training slowdown: 34.59%

16/27
% 60 - 1.00 1.00 - ___Egmpn
@ 40 43/107 0.75 1 0.751—{arde
) LL I
@ 8 0.50 1 0.50 A !
S 201 0.25 - 0.25 - I
S O_:3/392 0.00 1. La':ge'sca'el 0.00 4" I
e 0 50 100 1 10 100
C»O((\QC,O((\((\\?&(g JCT Slowdown (%) Duration (min)
Category Online Probing Off ine I nspection
1-Node | 4-Node | At Scale (=512 GPUs)
No fail-slow 386 64 11
CPU Contention 4 1 0
GPU Degradation 2 0 0
Network Congestion 0 42 13
Multiple | ssues 0 0 3
Total # Jobs 392 107 27
Avg. JCT Slowdown | 11.79% | 15.45% 34.59%

11

Straggler Characterization: Overview

Y 601 16/27
Cluster sampling & 43/107
 Computation stragglers: less § 40
frequent, low impact £ 0
 Communication stragglers: frequent, § 5/392
lhhirlhh irvanrna s O n -

1.00 -

0.75 1
.
A 0.50 A
@)

0.25

0.00 1

Large-scale

1.00 A

--=Comp

Comm

0.75 4 —Larde
0.50 - E
|
025 7] I/,
0.00 1 "

Stragglers are transient, frequent, and can cause significant slowdown!

* Avg training slowdown: 34.59% Category T-Node | 4Node | At Scale (25'12 GPUs)

No fail-slow 386 64 11
CPU Contention 4 1 0
GPU Degradation 2 0 0
Network Congestion 0 42 13
Multiple | ssues 0 0 3
Total # Jobs 392 107 27

Avg. JCT Slowdown | 11.79% | 15.45% 34.59%

Computation Stragglers: CPU Contention

* Multiple collocated jobs
contend for host CPUs

e Occasional occurrence
e ~1%, 4/392 jobs

e Short-lived
* mean duration: ~10 mins

CPU burst of BG jobs - CPU contention
— More time spent on CPU operations
- training slowdown

Thpt (Iters/s)

#High L9 \d Jobs

© N

=
©

=
o

o U

S

=~ 30.01

2 27.5

=

2250 PUO PU2

?5225 GPU1——GPU3
0 20 40 60 80 0O 20 40 60 80

S

>

-

©

Qo010
\ [‘ = | |--—-BG Job—Train Job
T T T T T (@) T T T T T
0 20 40 60 80 0 20 40 60 80

Training Time (min) Training Time (min)

A case of CPU contention

Computation Stragglers: GPU Degradation

Straggler GPU
degrad.
* Mainly due to thermal throttling _ S e T—eT
e High temperature, e.g., >70°C 1.6 W E ;’(7)'2' GPUL=—GFUS
: =15 s <77
e Occasional occurrence 814 £ 25.0-
~ . — , , , , 1o 22.5 14 , , , , ,
* ~0.5%, 2/392 jobs 0 10 20 30 40 50 © 0 10 20 30 40 50
. . Training Time (mMin Training Time (min
* Short-lived £ g Timelmin} = 9 Time (min)
. : o S GPUO——GPU?2
* ~10 mins mean duration 2 1.0- g 697 GPU1—GPU3
= £ 501
s S 40
& 0.0- gL , ,
& 0 1 2 3 0 20 40
GPU ID Training Time (min)

GPUO measured high temperature,
resulting in thermal throttling

A case of GPU degradation

14

Communication Stragglers: Congestion

Network congestion
* High NP_CNP_SENT/MARK/HANDLED recorded during fail-slow
* High occurrence frequency: ~40% of 4-node jobs (42/107)
* Long duration: ~24 mins

Straggler Congestion

Intra-node interconnects are stable,

< > > < > Inter-node RDMA has large variance
:U? Thpt Z 10 ;:N:EQ:NK:% § 25 Avg SM Util
% 0.5 g 75 g Comm. | Intra-Node | Inter-Node
= % 5.0 = 20 Type
e 0.4 - Q 0
o5 k. . NVL PIX RDMA

= = 2.5 r =

| | 1 S 0.0 —— 0o st . .

0 150 300 0 150 300 0 150 300 CoV 0.02 0.09 0.29

Time (min) Time (min) Time (min)

A case of network congestion
15

Stragglers at Scale: Trace Analysis

* 16/27 (~60%) training jobs experienced stragglers, mean duration ~72 mins

* Measured up to 90% throughput loss in 1024-GPU jobs
e Computation and communication stragglers may occur simultaneously

* Performance across iterations can vary significantly
1024-GPU LLM

1.0+ — 1.0
S hpt Uti
2 o0s 82505 /[W
_8' ' v 00 A |
> - 1024-GPU LLM o . x —F ' '
WU T T T T T] !

< 0 200 400 600 800 L 70 | —+—=Max. GPU Temperature
T Training Time (min) g 60 - ! !
= 1.0 = ; PR :
2 S 1.0 i . .
£ 0.8 = ! Congestion
S 0 0.5-

1024-GPU MoE § 0.0- Congestion!

0 2000 4000 6000 0 50 100 150 200 250 300 350
Training Time (min) Training Time (min)

16

L CERELCEWENR

» Stragglers are transient, primarily caused by degradation in
computation (CPU contention & slow GPUs) and communication
(network congestion)

 Computation stragglers are short-lived, less frequent;
communication stragglers are more frequent and last longer
time, causing more significant degradation

* Large-scale training experienced both computation and
communication stragglers, causing significant throughput loss,
potentially exceeding 90%

17

Agenda

 How can stragglers be detected rapidly?

Design Requirements

* Non-intrusive and framework-
transparent

e Rapid and accurate

e Fully automated

* Lightweight, with minimum
performance overhead

e
LT d
5

.

W s O &3
w »

\\‘\
(PN

It

Overview of Greyhound-Detect System

/ Master Node \

ﬂ

r

L

Global Controller

v

r

.

Global Analyzer

>

4 Validator

~

Test Scheduler

v

Test Dlspatcher

\
l}\\/alldatlon

///

A

I: 3. P}ﬁilinp

;ﬂargki

\ Tracking
I |
'E,_—[Monitor][Benchmark Executor |«

Local Controller

orker Nodes . Report FaiI-sIow\N

Local Analyzer J

[Model/Apps 1’1 @

)

|

Distributed Training Framework

System Libs (e.g., NCCL, CUDA)

I

ardware Devices E

"GPU

[]

\S

Training Processes

ﬁﬁﬁﬁu//
—_— J

20

Technical Challenges

* Challenge #1: How to infer the iteration time without framework’s cooperation?

* Challenge #2: How to detect the onset and termination of a straggler event?

21

Non-Intrusive Iteration Time Inference

Challenge #1: How to infer the iteration time without framework’s cooperation?
* Hook to NCCL calls and intercept Communication Ops via Linux’s LD_PRELOAD
* Training is iterative, w/ periodic Communication Op patterns over iterations
 |dentify periodic Op patterns via time-series analysis and infer the iteration period

Communication Ops: ReduceScatter (RS), AllGather (AG), 2*AllIReduce (AR)

Ilteration time =T5-T1

|teration 2
RS|AG||AR|| AR 4 RS|AG || AR || AR I}S AG | | AR A;R
\] / \]
Y 1 Y
T1 Period #1 T5 Period #2 Period #3

22

Detecting the Onset of a Slow Iteration

Challenge #2: How to detect the onset and termination of a straggler event?

Bayesian online change-point detection (BOCD) + Verification to filter out false-positives
* A Bayesian method for online change-point detection
* Runlength

0 if changepoint at time ¢ : ST R W P Ml ~ (V|
T't ==’-... / . iy | . ."g. . .:-.. ..’. N .o.'.....~ ...’E .
rv_1+1 else. » IR U oar g full - VU . .
= ' AT - Atime series

* Updating

UPM predmtwe Changepomt prior Message

.

™ ™

T’t,xlt ZP Tt | Tt, X (’f't | T't—l) P(T't—l,xl:t—l)-

rt—1

75 100 125 150 175

The run length posterior at each time step;
darker indicates higher probability

Credit: Adams and MacKay, https://gregorygundersen.com/blog/2019/08/13)Bocd/

Non-Intrusive Straggler Inference

/ Master Node

A 4

\

r

Global Controlle

_

\

r
J

r

Global Analyzer

_

~\

J

4 Validator

~

r

Test Scheduler

\

J

Test Dispatcher

\

ﬂorker Nodes 2. Report Fail-slow
_______________ .

I->[Local Controller H Local Analyzer)

Gank,- [Model/Apps @]\\

1. Tracking

Distributed Training Framework

)

Run time-series analysis
to infer iteration period
and detect anomaly

—: Monitor Benchmark Executor
: System Libs (e.g., NCCL, CUD -

I

ardware Devices ﬂ

"GPU

Cooooo

L

L

J

\J

%

\u
\ Training Processes

>

Hook to NCCL calls and
intercept Communication
Ops via LD_PRELOAD

Agenda

* How should stragglers be mitigated effectively?

Design Requirements

e Reactive rather than predictive
» Straggler occurrence and
durations are unpredictable

* Online adjustment without
restarting the training job

 Effective for both computation
and communication stragglers

Design Space: the Four Mitigation Strategies

(S1) Do nothing: simply ignore fail-slow problems.

(S2) Adjust micro-batch distribution:
* |dea: assign less #micro-batches to slow DP groups - load balancing across DP groups

(S3) Adjust parallelism topology:
* Key insight: DP is more communication intensive than PP
* |dea: adjust parallelism, use congested links to serve PP traffic, and healthy links for DP traffic

(S4) Checkpoint and Restart: last resort, treat stragglers as failures

Strategy Effectiveness Action
Slow Comp. | Slow Comm. | Overhead
S1: Ignore No Effect No Effect No
S2: Adjust Microbatch Mitigate No Effect Low
S3: Adjust Topology Mitigate Mitigate Medium
S4: Ckpt-N-Restart Eliminate &2| Eliminate &4 High &2

Design Space: the Four Mitigation Strategies

(S1) Do nothing: simply ignore fail-slow problems.
(S2) Adjust micro-batch distribution:

e ldea’ asgion legs #micrn-hatches to slow DP oroiins = load balancine acrnss DP oroiing

Optimal strategy depends on straggler impacts and duration, which cannot
be known in prior

* 1aed: dajust paralierism, use congested I1nkKsSs To Serve PP rdrtic, dna nearny 1nks 1or vr trarric

(S4) Checkpoint and Restart: last resort, treat stragglers as failures

Strategy Effectiveness Action
Slow Comp. | Slow Comm. | Overhead
S1: Ignore No Effect No Effect No
S2: Adjust Microbatch Mitigate No Effect Low
S3: Adjust Topology Mitigate Mitigate Medium
S4: Ckpt-N-Restart Eliminate Eliminate High

The Ski Rental Problem

A skier goes to a ski resort with two choices: (1) renting skis for S1 per day or (2)

buying skis for SB. The skier has no idea how many days to ski and needs to decide
at the beginning of each day whether to rent or buy skis.

e Optimal strategy: Rent until realizing you should have bought, then buy
* Rent on the first B-1 days, and then buy skis on the B-th day
* The cost is £2x of the ideal optimum, the best possible for a deterministic online algorithm

Cost , o
2B-1

T

B-1 B Day
29

Multi-Level
Straggler
Mitigation

Starts with a low-cost
strategy (S1) and
progressively switches
to more effective, yet
more costly ones

Cost |

Switch

Observe

Strate Effectiveness Action
gy Slow Comp. | Slow Comm. | Overhead
S1: Ignore No Effect No Effect No
S2: Adjust Microbatch Mitigate No Effect Low
S3: Adjust Topology Mitigate Mitigate Medium
S4: Ckpt-N-Restart Eliminate B2| Eliminate &2 High &
Observe
\ T
Switch to S4
Observe
Switch to S3
to S2

N\,

| s1

T1 12 T3

Time

Agenda

* How do our detection and mitigation solutions perform?

Methodology

* Testbed
* NVIDIA H800 SuperPOD, 400 Gbps IB
* Upto 256 H800 GPUs in 8 DGX servers
* Framework: Megatron-LM

:w“gy‘lg-;;,,m__‘ A

U
4 y
AN
- |
< iills
s
[
W
Ww
v
aME
i,
!
i
aNIE
|

ﬁ
[]

= FE A2
=

 Straggler injection
» Slow computation: throttle GPU frequency
with nvidia-smi

e Slow communication: launch
communication-intensive jobs to create

network congestion

LT T AT] el LTI
ges ‘1&““‘.'\'!!!!:: PLLLL

ERENa

S e ‘E”"gf—

How Accurate Is Detection?

Probing jobs: specially designed to detect slow computation and/or communication
* Type-A for slow comput.: 4x H800 on 1 node, GPT-2 11B, 2TP-2PP, 10K iterations
* Type-B for slow commun.: 8x A100 on 4 noes, GPT-2 7B, 2TP-4DP, 10K iterations

Manually verified the probing results via trace inspection

Algorithm Accuracy? (%) FPR| (%) FNR| (%)
Type-A for slow com putation SlideWindow 99.5(390/392) 0.0(0/386) 25.0(2/8)
(single node) BOCD 77.8(305/392) | 18.39(87/473) | 0.0(0/6)
BOCD+V 100.0(392/392) 0.0(0/386) 0.0(0/6)
Algorithm Accuracyt (%) FPR| (%) FNR| (%)
Type-B for slow communication SlideWindow 93.5(100/107) 1.5(1/65) 12.2(6/49)
(4-node) BOCD 69.2(74/107) 34.0(33/97) 0.00(0/43)
BOCD+V 99.1(106/107) 0.00(0/64) 2.3(1/44)

Overhead: ~0.39% across all jobs, barely negligible

How Effective Is Mitigation?

Mitigating comput. stragglers (S2)
* Inject slow computations into 0-4 DP
groups in a 4-DP training job
* Overhead: <30s even #DP=512.

Mitigating commun. stragglers (S3)

* Inject weak, medium and strong
communication stragglers into 16-GPU
training jobs w/ 4 and 8 PP stages

* Overhead: <50s in our cluster, 6.72x
faster than ckpt-n-restart.

Slow commun. + slow comput.
e 16-GPU training w/ (4DP, 4PP)

E 2 Fail- slow Mitigated IHealthy 19

)

e 1.9x 1.9 .9x

iz 1 x 1x I I1 3% Ii(.sx I

S o

Fail- slow DP groups
- #PP=4 #PP=8
z T.64X 157 T.63X
> 1.0 fzﬁ ! 36 1.3%%, ml Aix L4s
Eos
|_
20.0 - | -
w M S

| Slow Communication_
| AdjustTého Slow Computation =—

1 m | Adjust Micro-batch

- WRestart
|

L | | .

0 200 400 600 800
Training Time (s)

g =

Thpt
(Iters/s)
|_I

o

34

How Does Greyhound Perform at Scale?

* Training GPT2-40B on 256 GPUs using (8TP, 16DP, 2PP)

* Inject 2 communication stragglers and 8 computation stragglers of varying severity

Total: 10.56s y

Identify stragglers in 10s

End-to-end performance:
1.58x faster

Comm. Slow | Comp. Slow | Detect Acc. Avg, Reaction
Weak: 3 BOCD: 3.7s
Medium: 2 Medium: 5 100% Prof.&Val.: 6.86s
Severe: 2
40 'I
c "ln*i
5 E 301
N
=220 =
~ —Mltlgated Origlnal \‘
HC_1.0 i ‘Ii._.! o i i i.;: L ;:.__:LI |
& 0.5 {——Communication --- Computation
0 500 1000 1500 2000 2500 3000

Training Time (s)

35

Conclusion

* First comprehensive characterization study of straggler problems for LM training

» Stragglers are transient, frequent, and can result in significant training slowdown

* Computation stragglers are short-lived, less frequent, communication stragglers are more
frequent and last longer time, causing more significant degradation

» Straggler detection
* Non-intrusive, rapid, accurate, and lightweight

 Effective multi-level straggler mitigation

* Four possible mitigation strategies
« Start w/ a low-cost one and progressively switches to more effective, yet more costly ones

ARTIFACT ARTIFACT ARTIFACT
A& EslBASE . EVALUATED EVALUATED EVALUATED
lTTTHEHONGKONG QAllbaba GrOUp év’usenlx' f‘usenlx er;’usennn(
UNIVERSITY OF SCIENCE g7 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
)_L AND TECHNOLOGY EEESD 36

AVAILABLE REPRODUCED

	Slide 1: Greyhound: Hunting Fail-Slows in Hybrid-Parallel Training at Scale
	Slide 2: Agenda
	Slide 3: The Rapid Scaling of Models and Clusters
	Slide 4: Distributed Large Model Training at Scale
	Slide 5: At hyperscale, failures become the norm, rather than the exception!
	Slide 6: Fail-Stop Failures
	Slide 7: Fail-Slow Failures (Stragglers)
	Slide 8: Agenda
	Slide 9: Straggler Characterization: Cluster Setup
	Slide 10: Straggler Characterization: Methodology
	Slide 11: Straggler Characterization: Overview
	Slide 12: Straggler Characterization: Overview
	Slide 13: Computation Stragglers: CPU Contention
	Slide 14: Computation Stragglers: GPU Degradation
	Slide 15: Communication Stragglers: Congestion
	Slide 16: Stragglers at Scale: Trace Analysis
	Slide 17: Three Takeaways
	Slide 18: Agenda
	Slide 19: Design Requirements
	Slide 20: Overview of Greyhound-Detect System
	Slide 21: Technical Challenges
	Slide 22: Non-Intrusive Iteration Time Inference
	Slide 23: Detecting the Onset of a Slow Iteration
	Slide 24: Non-Intrusive Straggler Inference
	Slide 25: Agenda
	Slide 26: Design Requirements
	Slide 27: Design Space: the Four Mitigation Strategies
	Slide 28: Design Space: the Four Mitigation Strategies
	Slide 29: The Ski Rental Problem
	Slide 30: Multi-Level Straggler Mitigation
	Slide 31: Agenda
	Slide 32: Methodology
	Slide 33: How Accurate Is Detection?
	Slide 34: How Effective Is Mitigation?
	Slide 35: How Does Greyhound Perform at Scale?
	Slide 36: Conclusion

